*Note that not necessarily all information presented is referenced in the sources listed. Established or well-known facts, for instance, may not be mentioned in the sources.
Before the Phanerozoic:
>Siegel, E. (2019, October 22). What Came First: Inflation Or The Big Bang? Forbes. https://www.forbes.com/sites/startswithabang/2019/10/22/what-came-first-inflation-or-the-big-bang
>Siegel, E. (2018, November 17). Ask Ethan: Are quantum fields real? Forbes. https://www.forbes.com/sites/startswithabang/2018/11/17/ask-ethan-are-quantum-fields-real
>Siegel, E. (2020, October 9). Ask Ethan: When Did The Universe Get Its First Quantum Fields? Forbes. https://www.forbes.com/sites/startswithabang/2020/10/09/ask-ethan-when-did-the-universe-get-its-first-quantum-fields
>Siegel, E. (2015, December 31). Why are we made of matter and not antimatter? Forbes. https://www.forbes.com/sites/startswithabang/2015/12/31/why-are-we-made-of-matter-and-not-antimatter/
>Our solar system. (n.d.). NASA Solar System Exploration. https://solarsystem.nasa.gov/solar-system/our-solar-system/in-depth
>Tavares, F. (2022). Collision may have formed the moon in mere hours, simulations reveal. NASA. https://www.nasa.gov/feature/ames/lunar-origins-simulations
>Gough, E. (2022, March 9). How did Earth go From Molten Hellscape to Habitable Planet? - Universe Today. Universe Today. https://www.universetoday.com/154874/how-did-earth-go-from-molten-hellscape-to-habitable-planet
>Miyazaki, Y., & Korenaga, J. (2022). A wet heterogeneous mantle creates a habitable world in the Hadean. Nature, 603(7899), 86–90. https://doi.org/10.1038/s41586-021-04371-9
>Palus, S. (2014, April 21). Venus’ crust heals too fast for plate tectonics. Ars Technica. https://arstechnica.com/science/2014/04/venus-crust-heals-too-fast-for-plate-tectonics
>Bercovici, D., & Ricard, Y. (2014). Plate tectonics, damage and inheritance. Nature, 508(7497), 513–516. https://doi.org/10.1038/nature13072
>Stern, R. S., Gerya, T., & Tackley, P. J. (2018). Stagnant lid tectonics: Perspectives from silicate planets, dwarf planets, large moons, and large asteroids. Geoscience Frontiers, 9(1), 103–119. https://doi.org/10.1016/j.gsf.2017.06.004
>Cooper, K. (2022, November 21). Vast volcanic eruptions may have turned Venus from paradise into hell. Space.com. https://www.space.com/venus-volcano-eruptions-large-igneous-province
>Way, M. O., Ernst, R. E., & Scargle, J. D. (2022). Large-scale volcanism and the heat death of terrestrial worlds. The Planetary Science Journal, 3(4), 92. https://doi.org/10.3847/psj/ac6033
>SwRI-led team finds ancient, high-energy impacts could have fueled. (2023, July 20). Southwest Research Institute. https://www.swri.org/press-release/swri-led-team-finds-ancient-high-energy-impacts-could-have-fueled-venus-volcanism
>Marchi, S. (2023). Long-lived volcanic resurfacing of Venus driven by early collisions. Nature. https://doi.org/10.1038/s41550-023-02037-2
>Kuta, S. (2023, March 17). Scientists spot recent volcanic activity on Venus. Smithsonian Magazine. https://www.smithsonianmag.com/smart-news/scientists-spot-recent-volcanic-activity-on-venus-180981831
>Herrick, R. R., & Hensley, S. (2023). Surface changes observed on a Venusian volcano during the Magellan mission. Science, 379(6638), 1205–1208. https://doi.org/10.1126/science.abm7735
>Gronstal, A. (2019, June 11). NASA Astrobiology. https://astrobiology.nasa.gov/news/in-search-of-an-ancient-global-magnetic-field-on-venus/
>In depth | Venus – NASA Solar System Exploration. (n.d.). NASA Solar System Exploration. https://solarsystem.nasa.gov/planets/venus/in-depth
>NASA Astrobiology. (n.d.). https://astrobiology.nasa.gov/news/in-search-of-an-ancient-global-magnetic-field-on-venus/
>O’Rourke, J., Buz, J., Fu, R. R., & Lillis, R. (2019). Detectability of remanent magnetism in the crust of Venus. Geophysical Research Letters, 46(11), 5768–5777. https://doi.org/10.1029/2019gl082725
>Bernstein, J. (2022, April 20). Why Venus rotates, slowly, despite sun’s powerful grip. News. https://news.ucr.edu/articles/2022/04/20/why-venus-rotates-slowly-despite-suns-powerful-grip
>Kane, S. R. (2022). Atmospheric dynamics of a near tidally locked Earth-sized planet. Nature Astronomy, 6(4), 420–427. https://doi.org/10.1038/s41550-022-01626-x
>Nield, D. (2016, October 26). Why Are Venus And Uranus Spinning in The Wrong Direction? : ScienceAlert. ScienceAlert. https://www.sciencealert.com/why-are-venus-and-uranus-spinning-in-the-wrong-direction
>Ingersoll, A. P., & Dobrovolskis, A. R. (1978). Venus’ rotation and atmospheric tides. Nature, 275(5675), 37–38. https://doi.org/10.1038/275037a0
>Tidal Locking | Earth & Tides – Moon: NASA Science. (n.d.). Moon: NASA Science. https://moon.nasa.gov/moon-in-motion/earth-and-tides/tidal-locking/
>In Depth | Mercury – NASA Solar System Exploration. (n.d.). NASA Solar System Exploration. https://solarsystem.nasa.gov/planets/mercury/in-depth/
>Correia, A. C. M., & Laskar, J. (2009). Mercury’s capture into the 3/2 spin–orbit resonance including the effect of core–mantle friction. Icarus, 201(1), 1–11. https://doi.org/10.1016/j.icarus.2008.12.034
>Wall, M. (2021, October 13). Life on Venus may never have been possible. Space.com. https://www.space.com/venus-never-habitable-no-oceans
>A Solution to the Faint-Sun Paradox Reveals a Narrow Window for Life | Quanta Magazine. (2022, April 2). Quanta Magazine. https://www.quantamagazine.org/the-sun-was-dimmer-when-earth-formed-how-did-life-emerge-20220127/
>Turbet, M., Bolmont, E., Chaverot, G., Ehrenreich, D., Leconte, J., & Marcq, E. (2021). Day–night cloud asymmetry prevents early oceans on Venus but not on Earth. Nature, 598(7880), 276–280. https://doi.org/10.1038/s41586-021-03873-w
>Constantinou, T., Shorttle, O., & Rimmer, P. B. (2024). A dry Venusian interior constrained by atmospheric chemistry. Nature Astronomy, 1-10. https://doi.org/10.1038/s41550-024-02414-5
>Lane, N., & Martin, W. F. (2012). The origin of membrane bioenergetics. Cell, 151(7), 1406–1416. https://doi.org/10.1016/j.cell.2012.11.050
>Dodd, M. S., Papineau, D., Grenne, T., Slack, J. F., Rittner, M., Pirajno, F., O’Neil, J., & Little, C. T. S. (2017). Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature, 543(7643), 60–64. https://doi.org/10.1038/nature21377
>Martin, W., Baross, J. A., Kelley, D. S., & Russell, M. J. (2008). Hydrothermal vents and the origin of life. Nature Reviews Microbiology, 6(11), 805–814. https://doi.org/10.1038/nrmicro1991
>Deamer, D. W., & Georgiou, C. D. (2015). Hydrothermal Conditions and the Origin of Cellular Life. Astrobiology, 15(12), 1091–1095. https://doi.org/10.1089/ast.2015.1338
>Georgieva, M. N., Little, C. T. S., Maslennikov, V. V., Glover, A. G., Ayupova, N. R., & Herrington, R. (2021). The history of life at hydrothermal vents. Earth-Science Reviews, 217, 103602. https://doi.org/10.1016/j.earscirev.2021.103602
>Q. Choi, C. (2016, March 6). NASA Astrobiology. https://astrobiology.nasa.gov/news/lifes-building-blocks-form-in-replicated-deep-sea-vents/
>Burcar, B. T., Barge, L. M., Trail, D., Watson, E. B., Russell, M. J., & McGown, L. B. (2015). RNA Oligomerization in Laboratory Analogues of Alkaline Hydrothermal Vent Systems. Astrobiology, 15(7), 509–522. https://doi.org/10.1089/ast.2014.1280
>The End of the RNA World Is Near, Biochemists Argue | Quanta Magazine. (2019, February 28). Quanta Magazine. https://www.quantamagazine.org/the-end-of-the-rna-world-is-near-biochemists-argue-20171219
>Wills, P. R., & Carter, C. W. (2018). Insuperable problems of the genetic code initially emerging in an RNA world. BioSystems, 164, 155–166. https://doi.org/10.1016/j.biosystems.2017.09.006
>American Crystallographic Association (ACA). (2016, July 20). Universal Genetic Code May Not Be So Universal. newswise.com. https://www.newswise.com/articles/universal-genetic-code-may-not-be-so-universal
>Müller, F., Escobar, L., Xu, F., Węgrzyn, E., Nainytė, M., Amatov, T., Chan, C., Pichler, A., & Carell, T. (2022). A prebiotically plausible scenario of an RNA–peptide world. Nature, 605(7909), 279–284. https://doi.org/10.1038/s41586-022-04676-3
>Carell, T., Brandmayr, C., Hienzsch, A., Müller, M., Pearson, D., Reiter, V., Thoma, I., Thumbs, P., & Wagner, M. (2012). Structure and Function of Noncanonical Nucleobases. Angewandte Chemie, 51(29), 7110–7131. https://doi.org/10.1002/anie.201201193
>Liu, B., Pappas, C. G., Ottelé, J., Schaeffer, G., Jurissek, C., Pieters, P. F., Altay, M., Marić, I., Stuart, M. C. A., & Otto, S. (2020). Spontaneous Emergence of Self-Replicating Molecules Containing Nucleobases and Amino Acids. Journal of the American Chemical Society, 142(9), 4184–4192. https://doi.org/10.1021/jacs.9b10796
>Mizuuchi, R., Furubayashi, T., & Ichihashi, N. (2022). Evolutionary transition from a single RNA replicator to a multiple replicator network. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-29113-x
>Howell, E. (2020). DNA’s Building Blocks May Have Their Origins in Outer Space. Discovery. https://www.discovery.com/science/dna-s-building-blocks-may-have-their-origins-in-outer-space
>Williams, M. (2022, April 27). All Five of Life's Informational Components can Form in Space - Universe Today. Universe Today. https://www.universetoday.com/155615/all-five-of-lifes-informational-components-can-form-in-space/
>Oba, Y., Takano, Y., Naraoka, H., Watanabe, N., & Kouchi, A. (2019). Nucleobase synthesis in interstellar ices. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-12404-1
>Scientists discover new “origins of life” chemical reactions: The reaction generates amino acids and nucleic acids, the building blocks of proteins and DNA. (2022, July 22). ScienceDaily. https://www.sciencedaily.com/releases/2022/07/220728112005.htm
>Pulletikurti, S., Yadav, M., Springsteen, G., & Krishnamurthy, R. (2022). Prebiotic synthesis of α-amino acids and orotate from α-ketoacids potentiates transition to extant metabolic pathways. Nature Chemistry, 14(10), 1142–1150. https://doi.org/10.1038/s41557-022-00999-w
>Ucl. (2022, May 6). Deep sea vents had ideal conditions for origin of life. UCL News. https://www.ucl.ac.uk/news/2019/nov/deep-sea-vents-had-ideal-conditions-origin-life
>Jordan, S. (2021, November 8). Protocells in deep sea hydrothermal vents: another piece of the origin of life puzzle. Ecology & Evolution Community. https://ecoevocommunity.nature.com/posts/55368-protocells-in-deep-sea-hydrothermal-vents-another-piece-of-the-origin-of-life-puzzle
>Jordan, S., Rammu, H., Zheludev, I., Hartley, A. M., Maréchal, A., & Lane, N. (2019). Promotion of protocell self-assembly from mixed amphiphiles at the origin of life. Nature Ecology and Evolution, 3(12), 1705–1714. https://doi.org/10.1038/s41559-019-1015-y
>Urton, J. (2019, August 12). First cells on ancient Earth may have emerged because building blocks of proteins stabilized membranes. UW News. https://www.washington.edu/news/2019/08/12/protein-building-blocks-stabilize-membranes/
>Cornell, C. E., Black, R. A., Xue, M., Litz, H. E., Ramsay, A. J., Gordon, M. T., Mileant, A., Cohen, Z. R., Williams, J. A., Lee, K. K., Drobny, G. P., & Keller, S. L. (2019). Prebiotic amino acids bind to and stabilize prebiotic fatty acid membranes. Proceedings of the National Academy of Sciences of the United States of America, 116(35), 17239–17244. https://doi.org/10.1073/pnas.1900275116
>Black, R. A., Blosser, M. C., Stottrup, B. L., Tavakley, R., Deamer, D. W., & Keller, S. L. (2013). Nucleobases bind to and stabilize aggregates of a prebiotic amphiphile, providing a viable mechanism for the emergence of protocells. Proceedings of the National Academy of Sciences, 110(33), 13272–13276. https://doi.org/10.1073/pnas.1300963110
>Lin, J., Kamat, N. P., Jena, S. G., & Szostak, J. W. (2018). Fatty Acid/Phospholipid Blended Membranes: A Potential Intermediate State in Protocellular Evolution. Small, 14(15), 1704077. https://doi.org/10.1002/smll.201704077
>Attal, R., & Schwartz, L. (2021). Thermally driven fission of protocells. Biophysical Journal, 120(18), 3937–3959. https://doi.org/10.1016/j.bpj.2021.08.020
>Jheeta, S., Chatzitheodoridis, E., Devine, K. G., & Block, J. (2021). The Way forward for the Origin of Life: Prions and Prion-Like Molecules First Hypothesis. Life, 11(9), 872. https://doi.org/10.3390/life11090872
>Hilário, A., Capa, M., Dahlgren, T. G., Halanych, K. M., Little, C. T. S., Thornhill, D. J., Verna, C., & Glover, A. G. (2011). New perspectives on the ecology and evolution of siboglinid tubeworms. PLoS ONE, 6(2), e16309. https://doi.org/10.1371/journal.pone.0016309
>Bright, M., Klose, J., & Nussbaumer, A. D. (2013). Giant tubeworms. Current Biology, 23(6). https://www.cell.com/current-biology/pdf/S0960-9822%2813%2900074-2.pdf
>Weiss, M. C., Sousa, F. L., Mrnjavac, N., Neukirchen, S., Roettger, M., Nelson-Sathi, S., & Martin, W. (2016). The physiology and habitat of the last universal common ancestor. Nature Microbiology, 1(9). https://doi.org/10.1038/nmicrobiol.2016.116
>Moody, E. R. R., Álvarez-Carretero, S., Mahendrarajah, T. A., Clark, J. W., Betts, H. C., Dombrowski, N., Szánthó, L. L., Boyle, R. A., Daines, S., Chen, X., Lane, N., Yang, Z., Shields, G. A., Szöllősi, G. J., Spang, A., Pisani, D., Williams, T. A., Lenton, T. M., & Donoghue, P. C. J. (2024). The nature of the last universal common ancestor and its impact on the early Earth system. Nature Ecology & Evolution. https://doi.org/10.1038/s41559-024-02461-1
>Koonin, E. V., & Makarova, K. S. (2019). Origins and evolution of CRISPR-Cas systems. Philosophical Transactions of the Royal Society B Biological Sciences, 374(1772), 20180087. https://doi.org/10.1098/rstb.2018.0087
>Koonin, E. V., Krupovic, M., Ishino, S., & Ishino, Y. (2020). The replication machinery of LUCA: common origin of DNA replication and transcription. BMC Biology, 18(1). https://doi.org/10.1186/s12915-020-00800-9
>Embley, M., & Williams, T. (2016, May 10). Only two domains, not three: changing views on the tree of life. Microbiology Society. https://microbiologysociety.org/publication/past-issues/what-is-life/article/only-two-domains-not-three-changing-views-on-the-tree-of-life-what-is-life.html
>Williams, T. A., Foster, P. G., Cox, C. J., & Embley, T. M. (2013). An archaeal origin of eukaryotes supports only two primary domains of life. Nature, 504(7479), 231–236. https://doi.org/10.1038/nature12779
>Cojocaru, R., & Unrau, P. J. (2017). Transitioning to DNA genomes in an RNA world. eLife, 6. https://doi.org/10.7554/elife.32330
>Alberts, B. (2002). The RNA World and the Origins of Life. Molecular Biology of the Cell - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK26876/
>Krupovic, M., Dolja, V. V., & Koonin, E. V. (2019). Origin of viruses: primordial replicators recruiting capsids from hosts. Nature Reviews Microbiology, 17(7), 449–458. https://doi.org/10.1038/s41579-019-0205-6
>Wein, T., & Dagan, T. (2020). Plasmid evolution. Current Biology, 30(19), R1158–R1163. https://doi.org/10.1016/j.cub.2020.07.003
>Kado, C. I. (1998). Origin and evolution of plasmids. Antonie Van Leeuwenhoek, 73(1), 117–126. https://doi.org/10.1023/a:1000652513822
>Moelling, K., & Broecker, F. (2021). Viroids and the origin of life. International Journal of Molecular Sciences, 22(7), 3476. https://doi.org/10.3390/ijms22073476
>Zeroing in on the origins of Earth’s “single most important evolutionary innovation.” (2021, September 28). MIT News | Massachusetts Institute of Technology. https://news.mit.edu/2021/photosynthesis-evolution-origins-0928
>Fournier, G. P., Moore, K., Rangel, L. T., Payette, J., Momper, L., & Bosak, T. (2021). The Archean origin of oxygenic photosynthesis and extant cyanobacterial lineages. Proceedings of the Royal Society B, 288(1959). https://doi.org/10.1098/rspb.2021.0675
>Hanada, S. (2015). Anoxygenic Photosynthesis —A Photochemical Reaction That Does Not Contribute to Oxygen Reproduction—. Microbes and Environments, 31(1), 1–3. https://doi.org/10.1264/jsme2.me3101rh
>Drabon, N., Knoll, A. H., Lowe, D. R., Bernasconi, S. M., Brenner, A. R., & Mucciarone, D. A. (2024). Effect of a giant meteorite impact on Paleoarchean surface environments and life. Proceedings of the National Academy of Sciences, 121(44), e2408721121. https://doi.org/10.1073/pnas.2408721121
>Korenaga, J. (2021). Was There Land on the Early Earth? Life, 11(11), 1142. https://doi.org/10.3390/life11111142
>Yellowstone Volcano Observatory. (2018, April 16). The source of Yellowstone’s heat | U.S. Geological Survey. https://www.usgs.gov/observatories/yvo/news/source-yellowstones-heat
>Lanese, N. (2021, November 8). Earth's 1st continents arose hundreds of millions of years earlier than thought. Live Science. https://www.livescience.com/earth-first-continents-cratons-study
>Chowdhury, P., Mulder, J. A., Cawood, P. A., Bhattacharjee, S., Roy, S., Wainwright, A. N., Nebel, O., & Mukherjee, S. (2021). Magmatic thickening of crust in non–plate tectonic settings initiated the subaerial rise of Earth’s first continents 3.3 to 3.2 billion years ago. Proceedings of the National Academy of Sciences, 118(46). https://doi.org/10.1073/pnas.2105746118
>Nance, R. D. (2022). The supercontinent cycle and Earth’s long‐term climate. Annals of the New York Academy of Sciences, 1515(1), 33–49. https://doi.org/10.1111/nyas.14849
>Aiyer, K. (2022, February 18). The Great Oxidation Event: How cyanobacteria Changed life | ASM.org. ASM.org. https://asm.org/Articles/2022/February/The-Great-Oxidation-Event-How-Cyanobacteria-Change
>Schirrmeister, B. E., De Vos, J. M., Antonelli, A., & Bagheri, H. C. (2013). Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. Proceedings of the National Academy of Sciences, 110(5), 1791–1796. https://doi.org/10.1073/pnas.1209927110
>Trail, D., Watson, E. B., & Tailby, N. D. (2011). The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature, 480(7375), 79–82. https://doi.org/10.1038/nature10655
>Mallik, A., Li, Y., & Wiedenbeck, M. (2017). Nitrogen evolution within the Earth’s atmosphere–mantle system assessed by recycling in subduction zones. Earth and Planetary Science Letters, 482, 556–566. https://doi.org/10.1016/j.epsl.2017.11.045
>Izon, G., Zerkle, A. L., Williford, K. H., Farquhar, J., Poulton, S. W., & Claire, M. (2017). Biological regulation of atmospheric chemistry en route to planetary oxygenation. Proceedings of the National Academy of Sciences of the United States of America, 114(13). https://doi.org/10.1073/pnas.1618798114
>Kim, W., & Whitman, W. B. (2013). Methanogens. Elsevier eBooks, 602–606. https://doi.org/10.1016/b978-0-12-384730-0.00204-4
>Olejarz, J., Iwasa, Y., Knoll, A. H., & Nowak, M. A. (2021). The Great Oxygenation Event as a consequence of ecological dynamics modulated by planetary change. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-23286-7
>Weizmann Institute of Science. (2017, January 31). A rusty green early ocean?. ScienceDaily. Retrieved July 29, 2023 from www.sciencedaily.com/releases/2017/01/170131080007.htm
>Halevy, I., Alesker, M., Schuster, E. M., Popovitz-Biro, R., & Feldman, Y. (2017). A key role for green rust in the Precambrian oceans and the genesis of iron formations. Nature Geoscience, 10(2), 135–139. https://doi.org/10.1038/ngeo2878
>Jaziri, A. Y., Charnay, B., Selsis, F., Leconte, J., & Lefèvre, F. (2022). Dynamics of the Great Oxidation Event from a 3D photochemical–climate model. Climate of the Past, 18(10), 2421–2447. https://doi.org/10.5194/cp-18-2421-2022
>Gumsley, A., Chamberlain, K. R., Bleeker, W., Söderlund, U., De Kock, M. O., Larsson, E., & Bekker, A. (2017). Timing and tempo of the Great Oxidation Event. Proceedings of the National Academy of Sciences, 114(8), 1811–1816. https://doi.org/10.1073/pnas.1608824114
>Hodgskiss, M. S., Crockford, P. W., Peng, Y., Wing, B. A., & Horner, T. J. (2019). A productivity collapse to end Earth’s Great Oxidation. Proceedings of the National Academy of Sciences of the United States of America, 116(35), 17207–17212. https://doi.org/10.1073/pnas.1900325116
>Case, A. J. (2017). On the Origin of Superoxide Dismutase: An Evolutionary Perspective of Superoxide-Mediated Redox Signaling. Antioxidants, 6(4), 82. https://doi.org/10.3390/antiox6040082
>Jiacheng Liu, & Michalski, J. (2021). The Great Oxidation event on early Mars: Evidence from Remote Sensing and Mars Rover Data.
>Yokoo, S., Hirose, K., Tagawa, S., Morard, G., & Ohishi, Y. (2022). Stratification in planetary cores by liquid immiscibility in Fe-S-H. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-28274-z
>Siegel, E. (2017, March 3). NASA’s MAVEN discovers how Mars lost its atmosphere. Forbes. https://www.forbes.com/sites/startswithabang/2017/03/03/nasa-discovers-how-mars-lost-its-atmosphere/
>Mukherjee, I., Large, R. R., Corkrey, R., & Danyushevsky, L. V. (2018). The Boring Billion, a slingshot for Complex Life on Earth. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-22695-x
>Zaremba-Niedzwiedzka, K., Caceres, E. F., Saw, J. H., Bäckström, D., Juzokaite, L., Vancaester, E., Seitz, K. W., Anantharaman, K., Starnawski, P., Kjeldsen, K. U., Stott, M. B., Nunoura, T., Banfield, J. F., Schramm, A., Baker, B. J., Spang, A., & Ettema, T. J. G. (2017). Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature, 541(7637), 353–358. https://doi.org/10.1038/nature21031
>Roger, A. J., Susko, E., & Leger, M. M. (2021). Evolution: Reconstructing the Timeline of Eukaryogenesis. Current Biology, 31(4), R193–R196. https://doi.org/10.1016/j.cub.2020.12.035
>Imachi, H., Nobu, M. K., Nakahara, N., Morono, Y., Ogawara, M., Takaki, Y., Takano, Y., Uematsu, K., Ikuta, T., Ito, M., Matsui, Y., Miyazaki, M., Murata, K., Saito, Y., Sakai, S., Song, C., Tasumi, E., Yamanaka, Y., Yamaguchi, T., . . . Takai, K. (2020). Isolation of an archaeon at the prokaryote–eukaryote interface. Nature, 577(7791), 519–525. https://doi.org/10.1038/s41586-019-1916-6
>Knopp, M., Stockhorst, S., Van Der Giezen, M., Garg, S. G., & Gould, S. B. (2021). The Asgard Archaeal-Unique Contribution to Protein Families of the Eukaryotic Common Ancestor Was 0.3%. Genome Biology and Evolution, 13(6). https://doi.org/10.1093/gbe/evab085
>Kontou, A., Herman, E. K., Field, M. C., Dacks, J. B., & Koumandou, V. L. (2022). Evolution of factors shaping the endoplasmic reticulum. Traffic, 23(9), 462–473. https://doi.org/10.1111/tra.12863
>Leander, B. S. (2020). Predatory protists. Current Biology, 30(10), R510–R516. https://doi.org/10.1016/j.cub.2020.03.052
>Zakryś, B., Milanowski, R., & Karnkowska, A. (2016). Evolutionary Origin of Euglena. Advances in Experimental Medicine and Biology, 3–17. https://doi.org/10.1007/978-3-319-54910-1_1
>McFadden, G. I., & Yeh, E. (2017). The apicoplast: now you see it, now you don’t. International Journal for Parasitology/International Journal for Parasitology, 47(2–3), 137–144. https://doi.org/10.1016/j.ijpara.2016.08.005
>Eleftherianos, I., Atri, J., Accetta, J., & Castillo, J. C. (2012). Endosymbiotic bacteria in insects: guardians of the immune system? Frontiers in Physiology, 4. https://doi.org/10.3389/fphys.2013.00046
>Bernstein, H., & Bernstein, C. (2016). Sexual Communication in Archaea, the Precursor to Eukaryotic Meiosis. Springer eBooks, 103–117. https://doi.org/10.1007/978-3-319-65536-9_7
>Hörandl, E., & Speijer, D. (2018). How oxygen gave rise to eukaryotic sex. Proceedings of the Royal Society B: Biological Sciences, 285(1872), 20172706. https://doi.org/10.1098/rspb.2017.2706
>Novikova, O. S., & Belfort, M. (2017). Mobile Group II Introns as Ancestral Eukaryotic Elements. Trends in Genetics, 33(11), 773–783. https://doi.org/10.1016/j.tig.2017.07.009
>Rogozin, I. B., Carmel, L., Csűrös, M., & Koonin, E. V. (2012). Origin and evolution of spliceosomal introns. Biology Direct, 7(1). https://doi.org/10.1186/1745-6150-7-11
>Aspden, J. L., Wallace, E. W., & Whiffin, N. (2023). Not all exons are protein coding: Addressing a common misconception. Cell Genomics, 3(4), 100296. https://doi.org/10.1016/j.xgen.2023.100296
>Diez, J., Martinez, J. P., Mestres, J., Sasse, F., Frank, R., & Meyerhans, A. (2012). Myxobacteria: natural pharmaceutical factories. Microbial Cell Factories, 11(1). https://doi.org/10.1186/1475-2859-11-52
>Parfrey, L. W., & Lahr, D. J. G. (2013). Multicellularity arose several times in the evolution of eukaryotes (Response to DOI 10.1002/bies.201100187). BioEssays, 35(4), 339–347. https://doi.org/10.1002/bies.201200143
>Knoll, A. H. (2011). The Multiple Origins of Complex Multicellularity. Annual Review of Earth and Planetary Sciences, 39(1), 217–239. https://doi.org/10.1146/annurev.earth.031208.100209
>Miao, L., Yin, Z., Knoll, A. H., Qu, Y., & Zhu, M. (2024). 1.63-billion-year-old multicellular eukaryotes from the Chuanlinggou Formation in North China. Science Advances, 10(4). https://doi.org/10.1126/sciadv.adk3208
>Cooper, G. M. (2000). The Nucleus. The Cell - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK9845/
>Halverson, G. P., Porter, S. M., & Shields, G. (2019). The Tonian and Cryogenian Periods. Elsevier eBooks, 495–519. https://doi.org/10.1016/b978-0-12-824360-2.00017-6
>Simion, P., Piégay, H., Baurain, D., Jager, M., Richter, D. J., Di Franco, A., Roure, B., Satoh, N., Quéinnec, E., Ereskovsky, A., Lapébie, P., Corre, E., Delsuc, F., King, N., Wörheide, G., & Manuel, M. (2017). A Large and Consistent Phylogenomic Dataset Supports Sponges as the Sister Group to All Other Animals. Current Biology, 27(7), 958–967. https://doi.org/10.1016/j.cub.2017.02.031
>Schirber, M. (2015, August). NASA GISS: Research features: “Snowball Earth” might have been slushy. https://www.giss.nasa.gov/research/features/201508_slushball/
>Song, H., An, Z., Ye, Q., Stüeken, E. E., Li, J., Hu, J., Algeo, T. J., Tian, L., Chu, D., Song, H., Xiao, S., & Tong, J. (2023). Mid-latitudinal habitable environment for marine eukaryotes during the waning stage of the Marinoan snowball glaciation. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-37172-x
>Klatt, J. M., Chennu, A., Arbic, B. K., Biddanda, B. A., & Dick, G. J. (2021). Possible link between Earth’s rotation rate and oxygenation. Nature Geoscience, 14(8), 564–570. https://doi.org/10.1038/s41561-021-00784-3
>Sánchez-Baracaldo, P., Ridgwell, A., & Raven, J. A. (2014). A Neoproterozoic Transition in the Marine Nitrogen Cycle. Current Biology, 24(6), 652–657. https://doi.org/10.1016/j.cub.2014.01.041
>Callieri, C., Cabello-Yeves, P. J., & Bertoni, F. (2022). The “Dark Side” of Picocyanobacteria: Life as We Do Not Know It (Yet). Microorganisms, 10(3), 546. https://doi.org/10.3390/microorganisms10030546
>Lenton, T. M., Boyle, R. A., Poulton, S. W., Shields, G. A., & Butterfield, N. J. (2014). Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nature Geoscience, 7(4), 257–265. https://doi.org/10.1038/ngeo2108
>Madinand, L., & Harbison, G. (2001). Gelatinous zooplankton. In Elsevier eBooks (pp. 9–19). https://doi.org/10.1016/b978-012374473-9.00198-3
>S. Dunn, F., & G. Liu, A. (2019, April 14). PALAEONTOLOGY[online] | Article: Fossil Focus > Fossil Focus: The Ediacaran Biota. PALAEONTOLOGY[Online]. https://www.palaeontologyonline.com/articles/2017/fossil-focus-ediacaran-biota/?doing_wp_cron=1690857079.6143770217895507812500