*Note that not necessarily all information presented is referenced in the sources listed. Established or well-known facts, for instance, may not be mentioned in the sources.
Birth and Death:
>Algol. (2020, January 4). History of the Earth [Video]. YouTube. https://www.youtube.com/watch?v=Q1OreyX0-fw
>Devonian. (n.d.). http://www.scotese.com/newpage3.htm
>Vitt, L. J., & Caldwell, J. P. (2008). Evolution of Ancient and Modern Amphibians and Reptiles. Elsevier eBooks, 83–110. https://doi.org/10.1016/b978-0-12-374346-6.00003-1
>Twitchett, R. J. (2012). Mass Extinctions, Notable Examples of. Elsevier eBooks, 167–177. https://doi.org/10.1016/b978-0-12-384719-5.00092-7
>Joseph, A. (2022). Geological timeline of significant events on Earth. Elsevier eBooks, 55–114. https://doi.org/10.1016/b978-0-323-95717-5.00020-7
>Stigall, A. L. (2011). Speciation collapse and invasive species dynamics during the Late Devonian “Mass Extinction.” GSA Today, 22(1), 4–9. https://doi.org/10.1130/g128a.1
> Supernovae. (n.d.). Imagine the Universe! https://imagine.gsfc.nasa.gov/science/objects/supernovae1.html
>Fields, B. D., Melott, A. L., Ellis, J., Ertel, A. F., Fry, B., Lieberman, B. S., Liu, Z., Miller, J., & Thomas, B. C. (2020). Supernova triggers for end-Devonian extinctions. Proceedings of the National Academy of Sciences of the United States of America, 117(35), 21008–21010. https://doi.org/10.1073/pnas.2013774117
>Racki, G. (2020). A volcanic scenario for the Frasnian–Famennian major biotic crisis and other Late Devonian global changes: More answers than questions? Global and Planetary Change, 189, 103174. https://doi.org/10.1016/j.gloplacha.2020.103174
>Rakociński, M., Marynowski, L., Pisarzowska, A., Bełdowski, J., Siedlewicz, G., Zatoń, M., Perri, M. C., Spalletta, C., & Schönlaub, H. P. (2020). Volcanic related methylmercury poisoning as the possible driver of the end-Devonian Mass Extinction. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-64104-2
>Bond, D. P., & Grasby, S. E. (2017). On the causes of mass extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology, 478, 3–29. https://doi.org/10.1016/j.palaeo.2016.11.005
>Montañez, I. P., & Poulsen, C. J. (2013). The Late Paleozoic Ice Age: An Evolving Paradigm. Annual Review of Earth and Planetary Sciences, 41(1), 629–656. https://doi.org/10.1146/annurev.earth.031208.100118
>Pawlik, Ł., Buma, B., Šamonil, P., Kvaček, J., Gałązka, A., Kohout, P., & Malik, I. (2020). Impact of trees and forests on the Devonian landscape and weathering processes with implications to the global Earth’s system properties - A critical review. Earth-Science Reviews, 205, 103200. https://doi.org/10.1016/j.earscirev.2020.103200
>Stein, W. E., Berry, C. M., Morris, J., Hernick, L. V., Mannolini, F., Straeten, C. V., Landing, E., Marshall, J., Wellman, C. H., Beerling, D. J., & Leake, J. R. (2020). Mid-Devonian Archaeopteris Roots Signal Revolutionary Change in Earliest Fossil Forests. Current Biology, 30(3), 421-431.e2. https://doi.org/10.1016/j.cub.2019.11.067
>Engelman, R. K. (2023). A Devonian Fish Tale: A New Method of Body Length Estimation Suggests Much Smaller Sizes for Dunkleosteus terrelli (Placodermi: Arthrodira). Diversity, 15(3), 318. https://doi.org/10.3390/d15030318
>Coatham, S. J., Vinther, J., Rayfield, E. J., & Klug, C. (2020). Was the Devonian placoderm Titanichthys a suspension feeder? Royal Society Open Science, 7(5), 200272. https://doi.org/10.1098/rsos.200272
>Long, J. A., Trinajstic, K., & Johanson, Z. (2009). Devonian arthrodire embryos and the origin of internal fertilization in vertebrates. Nature, 457(7233), 1124–1127. https://doi.org/10.1038/nature07732
>Perry, C. T., Figueiredo, J., Vaudo, J. J., Hancock, J., Rees, R., & Shivji, M. (2018). Comparing length-measurement methods and estimating growth parameters of free-swimming whale sharks (Rhincodon typus) near the South Ari Atoll, Maldives. Marine and Freshwater Research, 69(10), 1487. https://doi.org/10.1071/mf17393
>Copper, P. (2002). Reef development at the Frasnian/Famennian mass extinction boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 181(1–3), 27–65. https://doi.org/10.1016/s0031-0182(01)00472-2
>Visscher, P. T., & Stolz, J. F. (2004). Microbial mats as bioreactors: populations, processes, and products. Elsevier eBooks, 87–100. https://doi.org/10.1016/b978-0-444-52019-7.50009-7
>Greb, S., Hendricks, R., & Chesnut, D. (1993). Fossil Beds of the Falls of the Ohio. Kentucky Geological Survey. https://kgs.uky.edu/kgsweb/olops/pub/kgs/kgsxisp19reduce.pdf
>Shikina, S., & Chang, C. (2017). Cnidaria. Elsevier eBooks, 491–497. https://doi.org/10.1016/b978-0-12-809633-8.20597-9
>Zapalski, M. K. (2014). Evidence of photosymbiosis in Palaeozoic tabulate corals. Proceedings of the Royal Society B: Biological Sciences, 281(1775), 20132663. https://doi.org/10.1098/rspb.2013.2663
>Stanley, G. D. (2006). Photosymbiosis and the Evolution of Modern Coral Reefs. Science, 312(5775), 857–858. https://doi.org/10.1126/science.1123701
>Marshall, P., & Schuttenberg, H. (2006). A reef manager’s guide to coral bleaching.
>Dipper, F. (2022). Open water lifestyles: marine plankton. In Elsevier eBooks (pp. 193–228). https://doi.org/10.1016/b978-0-08-102826-1.00005-3
>Wynn, J., Behrens, P., Sundararajan, A., Hansen, J., & Apt, K. (2010). Production of single cell oils by dinoflagellates. In Elsevier eBooks (pp. 115–129). https://doi.org/10.1016/b978-1-893997-73-8.50010-4
>Waller, R. F., & Kořený, L. (2017). Plastid complexity in Dinoflagellates: a picture of gains, losses, replacements and revisions. In Advances in botanical research (pp. 105–143). https://doi.org/10.1016/bs.abr.2017.06.004
>Valiadi, M., & Iglesias-Rodriguez, D. (2013). Understanding bioluminescence in Dinoflagellates—How far have we come? Microorganisms, 1(1), 3–25. https://doi.org/10.3390/microorganisms1010003
>Delroisse, J., Duchatelet, L., Flammang, P., & Mallefet, J. (2021). Leaving the Dark Side? Insights Into the Evolution of Luciferases. Frontiers in Marine Science, 8, 673620. https://doi.org/10.3389/fmars.2021.673620
>Zapalski, M. K., Nowicki, J., Jakubowicz, M., & Berkowski, B. (2017). Tabulate corals across the Frasnian/Famennian boundary: architectural turnover and its possible relation to ancient photosymbiosis. Palaeogeography, Palaeoclimatology, Palaeoecology, 487, 416–429. https://doi.org/10.1016/j.palaeo.2017.09.028
>Eckardt, N. A. (2006). Genetic and Epigenetic Regulation of Embryogenesis. The Plant Cell, 18(4), 781–784. https://doi.org/10.1105/tpc.106.042440
>Cooper, G. M. (2000). The Complexity of Eukaryotic Genomes. The Cell - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK9846/
>Patil, V. S., Zhou, R., & Rana, T. M. (2013). Gene regulation by non-coding RNAs. Critical Reviews in Biochemistry and Molecular Biology, 49(1), 16–32. https://doi.org/10.3109/10409238.2013.844092
>Cooper, G. M. (2000). Regulation of Transcription in Eukaryotes. The Cell - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK9904/
>Henneman, B., Van Emmerik, C., Van Ingen, H., & Dame, R. T. (2018). Structure and function of archaeal histones. PLOS Genetics, 14(9), e1007582. https://doi.org/10.1371/journal.pgen.1007582
>Cooper, G. M. (2000). The Nucleus. The Cell - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK9845/
>Rensing, S. A. (2016). (Why) Does Evolution Favour Embryogenesis? Trends in Plant Science, 21(7), 562–573. https://doi.org/10.1016/j.tplants.2016.02.004
>Kumar, A., Placone, J. K., & Engler, A. J. (2017). Understanding the extracellular forces that determine cell fate and maintenance. Development, 144(23), 4261–4270. https://doi.org/10.1242/dev.158469
>Heard, E., & Martienssen, R. A. (2014). Transgenerational epigenetic inheritance: myths and mechanisms. Cell, 157(1), 95–109. https://doi.org/10.1016/j.cell.2014.02.045
>Whale Shark Anatomy: Exploring the Body Plan of the World’s Largest Fish. (n.d.). Marine Megafauna Foundation. https://marinemegafauna.org/guide-to-whale-sharks/anatomy
>Garcia-R, J. C., & Hayman, D. T. S. (2016). Origin of a major infectious disease in vertebrates: The timing of Cryptosporidium evolution and its hosts. Parasitology, 143. https://doi.org/10.1017/S0031182016001323
>Guérin, A., & Striepen, B. (2020). The Biology of the Intestinal Intracellular Parasite Cryptosporidium. Cell Host & Microbe, 28(4). https://doi.org/10.1016/j.chom.2020.09.007
>Atkinson, S. D., Bartholomew, J. L., & Lotan, T. (2018). Myxozoans: Ancient metazoan parasites find a home in phylum Cnidaria. Zoology, 129, 66–68. https://doi.org/10.1016/j.zool.2018.06.005
>Eszterbauer, E., Atkinson, S., Diamant, A., Morris, D., El-Matbouli, M., & Hartikainen, H. (2015). Myxozoan Life Cycles: Practical approaches and insights. In Springer eBooks (pp. 175–198). https://doi.org/10.1007/978-3-319-14753-6_10
>Yokoyama, H., Grabner, D., & Shirakashi, S. (2012). Transmission biology of the myxozoa. In InTech eBooks. https://doi.org/10.5772/29571
>Banu, H., & Rathinam, R. B. (2023). Myxozoan fish diseases: possible treatment and zoonoses. Journal of Parasitic Diseases, 47(2), 215–223. https://doi.org/10.1007/s12639-023-01568-9
>Panchin, A. Y., Aleoshin, V. V., & Panchin, Y. V. (2019). From tumors to species: a SCANDAL hypothesis. Biology Direct, 14(1). https://doi.org/10.1186/s13062-019-0233-1
>Jamesboy. (2017, June 20). How Many Species of Titanichthys are there? Before the Bolide. https://beforethebolide.wordpress.com/2017/06/21/how-many-species-of-titanichthys-are-there/#comments
>Dean, B. 1. (1909). Studies on fossil fishes (sharks, chimaeroids and arthrodires. Memoirs of the AMNH ; v. 9, pt. 5. https://digitallibrary.amnh.org/items/e08e038d-4c7c-4f93-85df-425b5ebeb30e
>History, C. M. O. N. (1938). The dorsal spine of Cladoselache. https://www.biodiversitylibrary.org/item/133700#page/5/mode/1up
>Coates, M. I., Gess, R. W., Finarelli, J. A., Criswell, K. E., & Tietjen, K. (2016). A symmoriiform chondrichthyan braincase and the origin of chimaeroid fishes. Nature, 541(7636), 208–211. https://doi.org/10.1038/nature20806
>Finucci, B., Dunn, M. R., & Jones, E. G. (2018). Aggregations and associations in deep-sea chondrichthyans. ICES Journal of Marine Science, 75(5), 1613–1626. https://doi.org/10.1093/icesjms/fsy034
>Brett, C. E., & Walker, S. E. (2002). Predators and Predation in Paleozoic Marine Environments. The Paleontological Society Papers, 8, 93–118. https://doi.org/10.1017/s1089332600001078
>Lund, R. (1990). Chondrichthyan life history styles as revealed by the 320 million years old Mississippian of Montana. Environmental Biology of Fishes, 27(1), 1–19. https://doi.org/10.1007/bf00004900
>Anderson, P. S. L., & Westneat, M. W. (2008). A biomechanical model of feeding kinematics for Dunkleosteus terrelli (Arthrodira, Placodermi). Paleobiology, 35(2), 251–269. https://doi.org/10.1666/08011.1
>Jobbins, M., Rücklin, M., Ferrón, H. G., & Klug, C. (2022). A new selenosteid placoderm from the Late Devonian of the eastern Anti-Atlas (Morocco) with preserved body outline and its ecomorphology. Frontiers in Ecology and Evolution, 10. https://doi.org/10.3389/fevo.2022.969158
>Ancient fish scales and vertebrate teeth share an embryonic origin. (2017, November 19). University of Cambridge. https://www.cam.ac.uk/research/news/ancient-fish-scales-and-vertebrate-teeth-share-an-embryonic-origin
>Gillis, J. A., Alsema, E. C., & Criswell, K. E. (2017). Trunk neural crest origin of dermal denticles in a cartilaginous fish. Proceedings of the National Academy of Sciences of the United States of America, 114(50), 13200–13205. https://doi.org/10.1073/pnas.1713827114
>Chen, D., Blom, H., Sanchez, S., Tafforeau, P., Märss, T., & Ahlberg, P. (2020). The developmental relationship between teeth and dermal odontodes in the most primitive bony fish Lophosteus. eLife, 9. https://doi.org/10.7554/elife.60985
>Rücklin, M., Donoghue, P. C. J., Johanson, Z., Trinajstic, K., Marone, F., & Stampanoni, M. (2012). Development of teeth and jaws in the earliest jawed vertebrates. Nature, 491(7426), 748–751. https://doi.org/10.1038/nature11555
>Broussard, D. R., Trop, J. M., Benowitz, J. A., Daeschler, E. B., Chamberlain, J. A., & Chamberlain, R. B. (2018). Depositional setting, taphonomy and geochronology of new fossil sites in the Catskill Formation (Upper Devonian) of north-central Pennsylvania, USA, including a new early tetrapod fossil. Palaeogeography Palaeoclimatology Palaeoecology, 511, 168–187. https://doi.org/10.1016/j.palaeo.2018.07.033
>Meyer-Berthaud B. (2000). The first trees. The Archaeopteris model. Journal de la Societe de biologie, 194(2), 65–70.
>Wang, J., Hilton, J., Pfefferkorn, H. W., Wang, S., Zhang, Y., Bek, J., Pšenička, J., Seyfullah, L. J., & Dilcher, D. (2021). Ancient noeggerathialean reveals the seed plant sister group diversified alongside the primary seed plant radiation. Proceedings of the National Academy of Sciences of the United States of America, 118(11), e2013442118. https://doi.org/10.1073/pnas.2013442118
>Béchard, I., Arsenault, F., Cloutier, R., & Kerr, J. (2014). The Devonian placoderm fish Bothriolepis canadensis revisited with three-dimensional digital imagery. Palaeontologia Electronica. https://doi.org/10.26879/417
>Daeschler, E. B., & Downs, J. P. (2018). New description and diagnosis of Hyneria lindae (Sarcopterygii, Tristichopteridae) from the Upper Devonian Catskill Formation in Pennsylvania, U.S.A. Journal of Vertebrate Paleontology, 38(3), e1448834. https://doi.org/10.1080/02724634.2018.1448834
>Gutierrez, E., Van Nynatten, A., Lovejoy, N., & Chang, B. (2016). Sensory Systems: Molecular evolution in vertebrates. In Elsevier eBooks (pp. 33–40). https://doi.org/10.1016/b978-0-12-800049-6.00175-x
>Bell, C. (2001). Memory-based expectations in electrosensory systems. Current Opinion in Neurobiology, 11(4), 481–487. https://doi.org/10.1016/s0959-4388(00)00238-5
>Retallack, G. J. (2011). Woodland hypothesis for Devonian tetrapod evolution. The Journal of Geology, 119(3), 235–258. https://doi.org/10.1086/659144
>Guo, X., Retallack, G. J., & Liu, J. (2023). Paleoenvironments of Late Devonian tetrapods in China. Scientific Reports, 13(1), 20378. https://doi.org/10.1038/s41598-023-47728-y
>Molnar, J. L., Diogo, R., Hutchinson, J. R., & Pierce, S. E. (2017). Reconstructing pectoral appendicular muscle anatomy in fossil fish and tetrapods over the fins‐to‐limbs transition. Biological Reviews/Biological Reviews of the Cambridge Philosophical Society, 93(2), 1077–1107. https://doi.org/10.1111/brv.12386
>Dhillon, S. K. (2018). Biological Databases. Elsevier eBooks, 96–117. https://doi.org/10.1016/b978-0-12-809633-8.20198-2
>Kitching, I., Forey, P., & Williams, D. (2016). Cladistics ☆. Elsevier eBooks. https://doi.org/10.1016/b978-0-12-809633-8.02357-8
>Johanson, Z. (2021). Paleontology: There are more placoderms in the sea. Current Biology, 31(16), R1012–R1014. https://doi.org/10.1016/j.cub.2021.06.073
>Betancur-R, R., Wiley, E. O., Arratia, G., Acero, A., Bailly, N., Miya, M., Lecointre, G., & Ortí, G. (2017). Phylogenetic classification of bony fishes. BMC Evolutionary Biology, 17(1). https://doi.org/10.1186/s12862-017-0958-3