*Note that not necessarily all information presented is referenced in the sources listed. Established or well-known facts, for instance, may not be mentioned in the sources.
Island of Dwarfs and Giants:
>Algol. (2020, January 4). History of the Earth [Video]. YouTube. https://www.youtube.com/watch?v=Q1OreyX0-fw
>Last ice age. (n.d.). http://www.scotese.com/lastice.htm
>Scotese, C. R., Song, H., Mills, B. J. W., & Van Der Meer, D. G. (2021). Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years. Earth-Science Reviews, 215, 103503. https://doi.org/10.1016/j.earscirev.2021.103503
>Vostok ICE Core Data Graph. (n.d.). https://serc.carleton.edu/details/images/15045.html
>Indonesia Flores Island • Flora & Fauna • Climate • Population. (n.d.). https://www.flores-indonesia.com/flores_indonesia.html
>Education, U. C. F. S. (n.d.). What Are Monsoons and Why Do They Happen? | Center for Science Education. UCAR. https://scied.ucar.edu/learning-zone/storms/monsoons
>Dennell, R. W., Louys, J., O’Regan, H. J., & Wilkinson, D. M. (2013). The origins and persistence of Homo floresiensis on Flores: biogeographical and ecological perspectives. Quaternary Science Reviews, 96, 98–107. https://doi.org/10.1016/j.quascirev.2013.06.031
>Smithsonian’s National Zoo and Conservation Biology Institute. (n.d.). Komodo dragon. https://nationalzoo.si.edu/animals/komodo-dragon
>Lawwell, L. (n.d.). Varanus komodoensis (Komodo Dragon). Animal Diversity Web. https://animaldiversity.org/accounts/Varanus_komodoensis/
>Tocheri, M., Veatch, E. G., Jatmiko, N., Saptomo, E. W., & Sutikna, T. (2022). Homo floresiensis. In Oxford University Press eBooks (pp. 38–69). https://doi.org/10.1093/oxfordhb/9780199355358.013.2
>Morwood, M. J., Brown, P., Jatmiko, N., Sutikna, T., Saptomo, E. W., Westaway, K. E., Due, R. A., Roberts, R. G., Maeda, T., Wasisto, S., & Djubiantono, T. (2005). Further evidence for small-bodied hominins from the Late Pleistocene of Flores, Indonesia. Nature, 437(7061), 1012–1017. https://doi.org/10.1038/nature04022
>Kaifu, Y., Kurniawan, I., Mizushima, S., Sawada, J., Lague, M., Setiawan, R., Sutisna, I., Wibowo, U. P., Suwa, G., Kono, R. T., Sasaki, T., Brumm, A., & D., G. (2024). Early evolution of small body size in Homo floresiensis. Nature Communications, 15(1), 1-13. https://doi.org/10.1038/s41467-024-50649-7
>Tocheri, M., Veatch, E. G., Jatmiko, N., Saptomo, E. W., & Sutikna, T. (2022). Homo floresiensis. In Oxford University Press eBooks (pp. 38–69). https://doi.org/10.1093/oxfordhb/9780199355358.013.2
>Hoetzel, S., Dupont, L., & Wefer, G. (2015). Miocene–Pliocene vegetation change in south-western Africa (ODP Site 1081, offshore Namibia). Palaeogeography Palaeoclimatology Palaeoecology, 423, 102–108. https://doi.org/10.1016/j.palaeo.2015.02.002
>Herrera, R. J., & Garcia-Bertrand, R. (2023). Origin and diversity of hominins. In Elsevier eBooks (pp. 1–51). https://doi.org/10.1016/b978-0-12-819086-9.00013-0
>Herrera, R. J., & Garcia-Bertrand, R. (2018). Early hominins. In Elsevier eBooks (pp. 33–60). https://doi.org/10.1016/b978-0-12-804124-6.00002-1
>McIntyre, M. H., Herrmann, E., Wobber, V., Halbwax, M., Mohamba, C., De Sousa, N., Atencia, R., Cox, D., & Hare, B. (2009). Bonobos have a more human-like second-to-fourth finger length ratio (2D:4D) than chimpanzees: a hypothesized indication of lower prenatal androgens. Journal of Human Evolution, 56(4), 361–365. https://doi.org/10.1016/j.jhevol.2008.12.004
>Best, A., & Kamilar, J. M. (2018). The evolution of eccrine sweat glands in human and nonhuman primates. Journal of Human Evolution, 117, 33–43. https://doi.org/10.1016/j.jhevol.2017.12.003
>Martins, P. T., Marí, M., & Boeckx, C. (2018). SRGAP2 and the gradual evolution of the modern human language faculty. Journal of Language Evolution, 3(1), 67-78. https://doi.org/10.1093/jole/lzx020
>Gowlett, J. a. J. (2016). The discovery of fire by humans: a long and convoluted process. Philosophical Transactions of the Royal Society B Biological Sciences, 371(1696), 20150164. https://doi.org/10.1098/rstb.2015.0164
>Hillert, D. G. (2015). On the Evolving Biology of Language. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.01796
>Rizal, Y., Westaway, K. E., Zaim, Y., Van Den Bergh, G. D., Bettis, E. A., Morwood, M. J., Huffman, O. F., Grün, R., Joannes-Boyau, R., Bailey, R. M., Sidarto, N., Westaway, M. C., Kurniawan, I., Moore, M. W., Storey, M., Aziz, F., Suminto, N., Zhao, J., Aswan, N., . . . Ciochon, R. L. (2019). Last appearance of Homo erectus at Ngandong, Java, 117,000–108,000 years ago. Nature, 577(7790), 381–385. https://doi.org/10.1038/s41586-019-1863-2
>Laziness helped lead to extinction of Homo erectus. (2018, August 18). ScienceDaily. https://www.sciencedaily.com/releases/2018/08/180810091542.htm
>Shipton, C., Blinkhorn, J., Breeze, P. S., Cuthbertson, P., Drake, N., Groucutt, H. S., Jennings, R. P., Parton, A., Scerri, E. M. L., Alsharekh, A., & Petraglia, M. D. (2018). Acheulean technology and landscape use at Dawadmi, central Arabia. PLoS ONE, 13(7), e0200497. https://doi.org/10.1371/journal.pone.0200497
>Berkovitz, B., & Shellis, P. (2023). Reptiles 1. Tuatara and lizards. In Elsevier eBooks (pp. 259–318). https://doi.org/10.1016/b978-0-323-91789-6.00012-1
>Veatch, E. G., Tocheri, M. W., Sutikna, T., McGrath, K., Saptomo, E. W., Jatmiko, N., & Helgen, K. M. (2019). Temporal shifts in the distribution of murine rodent body size classes at Liang Bua (Flores, Indonesia) reveal new insights into the paleoecology of Homo floresiensis and associated fauna. Journal of Human Evolution, 130, 45–60. https://doi.org/10.1016/j.jhevol.2019.02.002
>Forth, G. (2016). Why the Porcupine is Not a Bird: Explorations in the Folk Zoology of an Eastern Indonesian People. University of Toronto Press.
>Musser, G. G. (1981). The giant rat of Flores and its relatives east of Borneo and Bali. Bulletin of the AMNH, 169. http://hdl.handle.net/2246%2F568
>Wolff, J. O., & Sherman, P. W. (2008). Rodent societies: An Ecological and Evolutionary Perspective. University of Chicago Press.
>Canale-Parola, E. (1977). Physiology and evolution of spirochetes. Bacteriological Reviews, 41(1), 181–204. https://doi.org/10.1128/mmbr.41.1.181-204.1977
>Mappley, L. J., La Ragione, R. M., & Woodward, M. J. (2013). Brachyspira and its role in avian intestinal spirochaetosis. Veterinary Microbiology, 168(2–4), 245–260. https://doi.org/10.1016/j.vetmic.2013.11.019
>Johnson, R. C. (1996). Leptospira. Medical Microbiology - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK8451/
>Evangelista, K. V., & Coburn, J. (2010). Leptospira as an Emerging Pathogen: A Review of its Biology, Pathogenesis and Host Immune Responses. Future Microbiology, 5(9), 1413–1425. https://doi.org/10.2217/fmb.10.102
>Puspaningrum, M., Van Den Bergh, G., Chivas, A., Setiabudi, E., Kurniawan, I., Brumm, A., & Sutikna, T. (2014). Preliminary results of dietary and environmental reconstructions of Early to Middle Pleistocene Stegodons from the So’a Basin of Flores, Indonesia, based on enamel stable isotope records. VIth International Conference on Mammoths and Their Relatives, 164. https://ro.uow.edu.au/cgi/viewcontent.cgi?article=3053&context=smhpapers
>Ginsberg, J. R. (2001). Mammals, Biodiversity of. In Elsevier eBooks (pp. 777–810). https://doi.org/10.1016/b0-12-226865-2/00180-2
>Miller, J. H., Fisher, D. C., Crowley, B. E., Secord, R., & Konomi, B. A. (2022). Male mastodon landscape use changed with maturation (late Pleistocene, North America). Proceedings of the National Academy of Sciences, 119(25). https://doi.org/10.1073/pnas.2118329119
>Bird, M. I., Condie, S. A., O’Connor, S., O’Grady, D., Reepmeyer, C., Ulm, S., Zega, M., Saltré, F., & Bradshaw, C. J. A. (2019). Early human settlement of Sahul was not an accident. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-42946-9
>Larramendi, A. (2015). Proboscideans: shoulder height, body mass and shape. Acta Palaeontologica Polonica. https://doi.org/10.4202/app.00136.2014
>Ao, H., Zhang, P., Dekkers, M. J., Roberts, A. P., An, Z., Li, Y., Lu, F., Lin, S., & Li, X. (2015). New magnetochronology of Late Miocene mammal fauna, NE Tibetan Plateau, China: Mammal migration and paleoenvironments. Earth and Planetary Science Letters, 434, 220–230. https://doi.org/10.1016/j.epsl.2015.11.019
>Matsukawa, M., & Shibata, K. (2015). Review of Japanese Cenozoic (Miocene–Modern) vertebrate tracks. Ichnos/Ichnos : An International Journal for Plant and Animal Traces, 22(3–4), 261–290. https://doi.org/10.1080/10420940.2015.1064407
>The dawn of belief: religion in the upper Paleolithic of southwestern Europe. (1990). Choice Reviews Online, 28(04), 28–2208. https://doi.org/10.5860/choice.28-2208
>X, S. (2024, March 1). Asian elephants mourn, bury their dead calves: Study. phys.org. https://phys.org/news/2024-03-asian-elephants-dead-calves.html
>Kaswan, P., & Roy, A. (2024). Unearthing calf burials among Asian Elephants Elephas maximus Linnaeus, 1758 (Mammalia: Proboscidea: Elephantidae) in northern Bengal, India. Journal of Threatened Taxa, 16(2), 24615–24629. https://doi.org/10.11609/jott.8826.16.2.24615-24629
>Nick. (2024, November 25). How do elephants fight? Tsavo Trust. https://tsavotrust.org/how-do-elephant-fight/
>Wanghongsa, S., Boonkird, K., Rabiab, S., & Ruksat, S. (2006). On the Incident of Infanticide in Wild Elephants. Wildlife Yearbook, 7. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0f0b65906792ebbbf71198524b5eb9a692388c54
>White-headed vulture - BirdLife South Africa. (n.d.). BirdLife South Africa. https://www.birdlife.org.za/red-list/white-headed-vulture/
>White-headed Vulture | The Peregrine Fund. (n.d.). https://peregrinefund.org/explore-raptors-species/vultures/white-headed-vulture
>Kuhl, H., Frankl-Vilches, C., Bakker, A., Mayr, G., Nikolaus, G., Boerno, S. T., Klages, S., Timmermann, B., & Gahr, M. (2020). An unbiased molecular approach using 3′-UTRs resolves the avian Family-Level tree of life. Molecular Biology and Evolution, 38(1), 108–127. https://doi.org/10.1093/molbev/msaa191
>Junqueira, A. C., L., A. M., Paulo, D. F., Marinho, M. A., Tomsho, L. P., I., D., Purbojati, R. W., Ratan, A., & Schuster, S. C. (2016). Large-scale mitogenomics enables insights into Schizophora (Diptera) radiation and population diversity. Scientific Reports, 6(1), 1-13. https://doi.org/10.1038/srep21762
>Cranston, P. S., & Gullan, P. J. (2009). Phylogeny of insects. In Elsevier eBooks (pp. 780–793). https://doi.org/10.1016/b978-0-12-374144-8.00208-3
>Catts, E. P., & Mullen, G. R. (2002). MYIASIS ( muscoidea, oestroidea ). In Medical and Veterinary Entomology (pp. 317–348). https://doi.org/10.1016/b978-012510451-7/50018-9
>Mansfield, M. J., & Doxey, A. C. (2018). Genomic insights into the evolution and ecology of botulinum neurotoxins. Pathogens and Disease, 76(4). https://doi.org/10.1093/femspd/fty040
>Brasca, M., Morandi, S., & Silvetti, T. (2020). Clostridium spp. In Elsevier eBooks (pp. 431–438). https://doi.org/10.1016/b978-0-08-100596-5.22989-2
>Geng, X., Wang, M., Chen, J., Xiao, L., & Yang, J. (2023). Marine biological injuries and their medical management: A narrative review. World Journal of Biological Chemistry, 14(1), 1–12. https://doi.org/10.4331/wjbc.v14.i1.1
>Cullinane, A. A., Barr, B., Bernard, W., Duncan, J., Mulcahy, G., Smith, I., & Timoney, J. (2006). Infectious diseases. In Elsevier eBooks (pp. 1–111). https://doi.org/10.1016/b978-0-7020-2769-7.50006-x
>Benecke, R., Takano, K., Schmidt, J., & Henatsch, H. (1977). Tetanus toxin induced actions on spinal Renshaw cells and Ia-inhibitory interneurones during development of local tetanus in the cat. Experimental Brain Research, 27–27(3–4). https://doi.org/10.1007/bf00235503
>Gowda, A. K. J., Dharanesha, N. K., Giridhar, P., & Gowda, S. M. B. (2016). Cobboldia elephantis (Cobbold, 1866) larval infestation in an Indian elephant (Elephas maximus). Journal of Parasitic Diseases, 41(2), 364–366. https://doi.org/10.1007/s12639-016-0805-2
>Fry, B. G., Wroe, S., Teeuwisse, W., Van Osch, M. J. P., Moreno, K., Ingle, J., McHenry, C., Ferrara, T., Clausen, P., Scheib, H., Winter, K. L., Greisman, L., Roelants, K., Van Der Weerd, L., Clemente, C. J., Giannakis, E., Hodgson, W. C., Luz, S., Martelli, P., . . . Norman, J. A. (2009). A central role for venom in predation by Varanus komodoensis (Komodo Dragon) and the extinct giant Varanus ( Megalania ) priscus. Proceedings of the National Academy of Sciences, 106(22), 8969–8974. https://doi.org/10.1073/pnas.0810883106
>Pobiner, B., Pante, M., & Keevil, T. (2023). Early Pleistocene cut marked hominin fossil from Koobi Fora, Kenya. Scientific Reports, 13(1), 1-12. https://doi.org/10.1038/s41598-023-35702-7
>Touwaide, A., & Appetiti, E. (2024, June). Herbs in History: Basil. American Herbal Products Association. https://www.ahpa.org/herbs_in_history_basil
>Stefanaki, A., & Van Andel, T. (2021). Mediterranean aromatic herbs and their culinary use. In Elsevier eBooks (pp. 93–121). https://doi.org/10.1016/b978-0-12-822716-9.00003-2
>Škrovánková, S., Mišurcová, L., & Machů, L. (2012). Antioxidant activity and protecting health effects of common medicinal plants. Advances in Food and Nutrition Research, 75–139. https://doi.org/10.1016/b978-0-12-394598-3.00003-4
>Das, S., Sultana, K. W., & Chandra, I. (2023). In vitro propagation, phytochemistry and pharmacology of Basilicum polystachyon (L.) Moench (Lamiaceae): A short review. South African Journal of Botany, 155, 178–186. https://doi.org/10.1016/j.sajb.2023.02.009
>Drosera burmannii. (2019, June 16). Fierce Flora. https://www.fierceflora.com/drosera-burmannii/
>Adamec, L., Matušíková, I., & Pavlovič, A. (2021). Recent ecophysiological, biochemical and evolutional insights into plant carnivory. Annals of Botany, 128(3), 241-259. https://doi.org/10.1093/aob/mcab071
>Poppinga, S., Hartmeyer, S. R., Masselter, T., Hartmeyer, I., & Speck, T. (2013). Trap diversity and evolution in the family Droseraceae. Plant Signaling & Behavior, 8(7), e24685. https://doi.org/10.4161/psb.24685
>Poppinga, S., Smaij, J., Westermeier, A. S., Horstmann, M., Kruppert, S., Tollrian, R., & Speck, T. (2019). Prey capture analyses in the carnivorous aquatic waterwheel plant (Aldrovanda vesiculosa L., Droseraceae). Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-54857-w
>Sachse, R., Westermeier, A., Mylo, M., Nadasdi, J., Bischoff, M., Speck, T., & Poppinga, S. (2020). Snapping mechanics of the Venus flytrap (Dionaea muscipula). Proceedings of the National Academy of Sciences, 117(27), 16035-16042. https://doi.org/10.1073/pnas.2002707117
>Iosip, A. L., Böhm, J., Scherzer, S., Al-Rasheid, K. a. S., Dreyer, I., Schultz, J., Becker, D., Kreuzer, I., & Hedrich, R. (2020). The Venus flytrap trigger hair–specific potassium channel KDM1 can reestablish the K+ gradient required for hapto-electric signaling. PLoS Biology, 18(12), e3000964. https://doi.org/10.1371/journal.pbio.3000964
>Volkov, A. G., Adesina, T., & Jovanov, E. (2007). Closing of Venus flytrap by electrical stimulation of motor cells. Plant Signaling & Behavior, 2(3), 139–145. https://doi.org/10.4161/psb.2.3.4217
>Rayle, D. L., & Cleland, R. E. (1992). The Acid Growth Theory of auxin-induced cell elongation is alive and well. PLANT PHYSIOLOGY, 99(4), 1271–1274. https://doi.org/10.1104/pp.99.4.1271
>Zhang, S., Yang, Y., Li, J., Qin, J., Zhang, W., Huang, W., & Hu, H. (2018). Physiological diversity of orchids. Plant Diversity, 40(4), 196–208. https://doi.org/10.1016/j.pld.2018.06.003
>Watkinson, S. C. (2015). Mutualistic symbiosis between fungi and autotrophs. In Elsevier eBooks (pp. 205–243). https://doi.org/10.1016/b978-0-12-382034-1.00007-4
>Perotto, S., & Balestrini, R. (2024). At the core of the endomycorrhizal symbioses: Intracellular fungal structures in orchid and arbuscular mycorrhiza. New Phytologist, 242(4), 1408-1416. https://doi.org/10.1111/nph.19338
>Chugh, S., Guha, S., & Rao, I. U. (2009). Micropropagation of orchids: A review on the potential of different explants. Scientia Horticulturae, 122(4), 507–520. https://doi.org/10.1016/j.scienta.2009.07.016
>Kaur, H., Sena, S., Jha, P., Lekhak, M. M., Singh, S. K., Goutam, U., Arencibia, A. D., & Kumar, V. (2022). Arundina graminifolia (D.Don) Hochr. (Orchidaceae): A review of its medicinal importance, phytochemistry and pharmacology activities. South African Journal of Botany, 150, 956–964. https://doi.org/10.1016/j.sajb.2022.08.048
>Arundina graminifolia. (n.d.). Smithsonian Gardens. https://gardens.si.edu/collections/explore/object/ofeo-sg_2020-0114A
>Phaius. (n.d.). canbr.gov.au. https://www.canbr.gov.au/cpbr/cd-keys/RFKOrchids/key/rfkorchids/Media/Html/genera/Phaius.htm
>Ackerman, J. D., Phillips, R. D., Tremblay, R. L., Karremans, A., Reiter, N., Peter, C. I., Bogarín, D., A, O., & Liu, H. (2023). Beyond the various contrivances by which orchids are pollinated: Global patterns in orchid pollination biology. Botanical Journal of the Linnean Society, 202(3), 295-324. https://doi.org/10.1093/botlinnean/boac082
>Bulbophyllum lobbii. (n.d.). Smithsonian Gardens. https://www.si.edu/object/bulbophyllum-lobbii%3Aofeo-sg_2007-0703A
>Chen, M., & Blankenship, R. E. (2020). Photosynthesis | Photosynthesis. In Elsevier eBooks (pp. 150–156). https://doi.org/10.1016/b978-0-12-819460-7.00081-5
>MEIJER, H. J., & DUE, R. A. (2010). A new species of giant marabou stork (Aves: Ciconiiformes) from the Pleistocene of Liang Bua, Flores (Indonesia). Zoological Journal of the Linnean Society, 160(4), 707-724. https://doi.org/10.1111/j.1096-3642.2010.00616.x
>Meijer, H. J. M., Sutikna, T., Saptomo, E. W., & Tocheri, M. W. (2022). More bones of Leptoptilos robustus from Flores reveal new insights into giant marabou stork paleobiology and biogeography. Royal Society Open Science, 9(7). https://doi.org/10.1098/rsos.220435
>Kwapich, C. (n.d.). Leptoptilos dubius (greater adjutant). Animal Diversity Web. https://animaldiversity.org/accounts/Leptoptilos_dubius/
>flores crow - eBird. (n.d.). eBird. https://ebird.org/species/flocro1?siteLanguage=pt_BR
>Clayton, N. S., & Emery, N. J. (2007). The social life of corvids. Current Biology, 17(16), R652–R656. https://doi.org/10.1016/j.cub.2007.05.070
>Bugnyar, T. (2023). Why are ravens smart? Exploring the social intelligence hypothesis. Journal of Ornithology, 165(1), 15. https://doi.org/10.1007/s10336-023-02111-6
>Corbin, K., Frizzle, P., Smith, C., & Vieira, J. (n.d.). The Mourning Behaviors & Funeral Rituals of Animals. oercommons.org. https://oercommons.org/courseware/lesson/103320/student/?section=4
>yellow-spectacled heleia - eBird. (n.d.). eBird. https://ebird.org/species/ysweye1
>Symes, C. T. (2009). Handbook of the Birds of the World. Volume 13: Penduline-tits to Shrikes. Ostrich, 80(1), 67–68. https://doi.org/10.2989/ostrich.2009.80.1.12.770
>Potts, B. (2004). TREE BREEDING, PRACTICES | Genetic improvement of eucalypts. In Elsevier eBooks (pp. 1480–1490). https://doi.org/10.1016/b0-12-145160-7/00084-3
>Ponder, J. B., & Willette, M. M. (2014). Strigiformes. In Elsevier eBooks (pp. 189–198). https://doi.org/10.1016/b978-1-4557-7397-8.00023-2
>König, C., Weick, F., & Becking, J. (1999). Owls: A guide to the owls of the world. https://ci.nii.ac.jp/ncid/BA45786886
>flores scops-owl - eBird. (n.d.). eBird. https://ebird.org/species/flsowl1?siteLanguage=pt_BR
>moluccan scops-owl - eBird. (n.d.). eBird. https://ebird.org/species/mosowl1
>Brown, C. (n.d.). Python reticulatus (Reticulated Python). Animal Diversity Web. https://animaldiversity.org/accounts/Python_reticulatus/
>orange-footed megapode - eBird. (n.d.). eBird. https://ebird.org/species/orfscr1
>Howard, L. (n.d.). Megapodiidae (megapodes). Animal Diversity Web. https://animaldiversity.org/accounts/Megapodiidae/
>ATTACUS INOPINATUS. (n.d.). WorldFieldGuide.com. https://www.worldfieldguide.com/species-detail.php?taxno=18595
>Allen, S. (2012, April 1). The beautiful, majestic Saturniid moths. Loudoun Wildlife Conservancy. https://loudounwildlife.org/2012/04/the-beautiful-majestic-saturniid-moths/
>Siwanowicz, I. (n.d.). The Nose Knows | HHMI’s Beautiful Biology. https://www.hhmi.org/beautifulbiology/media-detail/nose-knows
>Corl, J. (n.d.). Gekko gecko (Tokay Gecko). Animal Diversity Web. https://animaldiversity.org/accounts/Gekko_gecko/
>Lizards. (2005). In Elsevier eBooks (pp. 57–75). https://doi.org/10.1016/b978-070202782-6.50007-7
>Autumn, K., Sitti, M., Liang, Y. A., Peattie, A. M., Hansen, W. R., Sponberg, S., Kenny, T. W., Fearing, R., Israelachvili, J. N., & Full, R. J. (2002). Evidence for van der Waals adhesion in gecko setae. Proceedings of the National Academy of Sciences, 99(19), 12252-12256. https://doi.org/10.1073/pnas.192252799
>Peters, A. (n.d.). Gasteracantha cancriformis. Animal Diversity Web. https://animaldiversity.org/accounts/Gasteracantha_cancriformis/
>Humenik, M., Scheibel, T., & Smith, A. (2011). Spider Silk. Progress in Molecular Biology and Translational Science, 131–185. https://doi.org/10.1016/b978-0-12-415906-8.00007-8
>Jarrell, J. (2018). The significance and evolution of menstruation. Best Practice & Research Clinical Obstetrics & Gynaecology, 50, 18–26. https://doi.org/10.1016/j.bpobgyn.2018.01.007
>Grose, C. (2012). Pangaea and the Out-of-Africa Model of Varicella-Zoster virus evolution and phylogeography. Journal of Virology, 86(18), 9558–9565. https://doi.org/10.1128/jvi.00357-12
>Whitley, R. J. (1996). Herpesviruses. Medical Microbiology - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK8157/
>Tommasi, C., & Breuer, J. (2022). The Biology of Varicella-Zoster Virus Replication in the Skin. Viruses, 14(5), 982. https://doi.org/10.3390/v14050982
>Bhavsar, S. M., & Mangat, C. (n.d.). Congenital varicella Syndrome. StatPearls - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK568794/
>Murthy, S., Agbor, A., Angedakin, S., Arandjelovic, M., Ayimisin, E. A., Bailey, E., Bergl, R. A., Brazzola, G., Dieguez, P., Eshuis, H., Fruth, B., Gillespie, T. R., Ginath, Y., Gray, M., Herbinger, I., Jones, S., Kehoe, L., Kühl, H., Kujirakwinja, D., . . . Ehlers, B. (2019). Cytomegalovirus distribution and evolution in hominines. Virus Evolution, 5(2). https://doi.org/10.1093/ve/vez015
>Mocarski, E. S. (2024). Cytomegalovirus Biology Viewed Through a Cell Death Suppression Lens. Viruses, 16(12), 1820. https://doi.org/10.3390/v16121820
>Nightingale, S., & Ng, V. L. (2010). Neonatal hepatitis. In Elsevier eBooks (pp. 728-740.e4). https://doi.org/10.1016/b978-1-4377-0774-8.10068-5
>Gupta, M., & Shorman, M. (n.d.). Cytomegalovirus infections. StatPearls - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK459185/
>Rosenberg, K. (2002). Birth, obstetrics and human evolution. BJOG an International Journal of Obstetrics & Gynaecology, 109(11), 1199–1206. https://doi.org/10.1016/s1470-0328(02)00410-x
>Shannon, J. (2020). Why do humans get acne? A hypothesis. Medical Hypotheses, 134, 109412. https://doi.org/10.1016/j.mehy.2019.109412
>Hoberg, E. P. (2002). Taenia tapeworms: their biology, evolution and socioeconomic significance. Microbes and Infection, 4(8), 859–866. https://doi.org/10.1016/s1286-4579(02)01606-4
>Wang, S., Wang, S., Luo, Y., Xiao, L., Luo, X., Gao, S., Dou, Y., Zhang, H., Guo, A., Meng, Q., Hou, J., Zhang, B., Zhang, S., Yang, M., Meng, X., Mei, H., Li, H., He, Z., Zhu, X., . . . Cai, X. (2016). Comparative genomics reveals adaptive evolution of Asian tapeworm in switching to a new intermediate host. Nature Communications, 7(1), 1-12. https://doi.org/10.1038/ncomms12845
>Payne, A. (n.d.). Taenia saginata. Animal Diversity Web. https://animaldiversity.org/accounts/Taenia_saginata/
>Chung, A. (n.d.). Taenia solium. Animal Diversity Web. https://animaldiversity.org/accounts/Taenia_solium/
>Kaifu, Y., Lin, H., Ikeya, N., Yamada, M., Iwase, A., Chang, L. K., Uchida, M., Hara, K., Amemiya, K., Sung, Y., Suzuki, K., Muramatsu, M., Tanaka, M., Hanai, S., Hawira, T., Uchida, S., Fujita, M., Miyazawa, Y., Nakamura, K., . . . Goto, A. (2025). Paleolithic seafaring in East Asia: An experimental test of the dugout canoe hypothesis. Science Advances, 11(26), eadv5507. https://doi.org/10.1126/sciadv.adv5507
>Beyer, R. M., Krapp, M., Eriksson, A., & Manica, A. (2021). Climatic windows for human migration out of Africa in the past 300,000 years. Nature Communications, 12(1), 1-10. https://doi.org/10.1038/s41467-021-24779-1
>Hallett, E. Y., Leonardi, M., Cerasoni, J. N., Will, M., Beyer, R., Krapp, M., Kandel, A. W., Manica, A., & Scerri, E. M. (2025). Major expansion in the human niche preceded out of Africa dispersal. Nature, 1-7. https://doi.org/10.1038/s41586-025-09154-0
>Lemoine, R. T., Buitenwerf, R., & Svenning, J. (2023). Megafauna extinctions in the late-Quaternary are linked to human range expansion, not climate change. Anthropocene, 44, 100403. https://doi.org/10.1016/j.ancene.2023.100403