*Note that not necessarily all information presented is referenced in the sources listed. Established or well-known facts, for instance, may not be mentioned in the sources.
Strange Sea:
>Algol. (2020, January 4). History of the Earth [Video]. YouTube. https://www.youtube.com/watch?v=Q1OreyX0-fw
>Ochoa, D., Salas-Gismondi, R., DeVries, T. J., Baby, P., De Muizon, C., Altamirano, A., Barbosa-Espitia, A., Foster, D. A., Quispe, K., Cardich, J., Gutiérrez, D., Perez, A., Valqui, J., Urbina, M., & Carré, M. (2021). Late Neogene evolution of the Peruvian margin and its ecosystems: a synthesis from the Sacaco record. International Journal of Earth Sciences, 110(3), 995–1025. https://doi.org/10.1007/s00531-021-02003-1
>Scotese, C. R., Song, H., Mills, B. J. W., & Van Der Meer, D. G. (2021). Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years. Earth-Science Reviews, 215, 103503. https://doi.org/10.1016/j.earscirev.2021.103503
>Webb, P. (n.d.). 7.4 Patterns of primary production. Roger Williams University. https://rwu.pressbooks.pub/webboceanography/chapter/7-4-patterns-of-primary-production/
>The Biological Productivity of the Ocean | Learn Science at Scitable. (2012). https://www.nature.com/scitable/knowledge/library/the-biological-productivity-of-the-ocean-70631104/
>Esperante, R., Brand, L. R., Chadwick, A. V., & Poma, O. (2014). Taphonomy and paleoenvironmental conditions of deposition of fossil whales in the diatomaceous sediments of the Miocene/Pliocene Pisco Formation, southern Peru—A new fossil-lagerstätte. Palaeogeography Palaeoclimatology Palaeoecology, 417, 337–370. https://doi.org/10.1016/j.palaeo.2014.09.029
>Collareta, A., Lambert, O., Marx, F. G., De Muizon, C., Landini, W., Bosio, G., Malinverno, E., Gariboldi, K., Gioncada, A., Urbina, M., & Bianucci, G. (2021). Vertebrate Palaeoecology of the Pisco Formation (Miocene, Peru): Glimpses into the Ancient Humboldt Current Ecosystem. Journal of Marine Science and Engineering, 9(11), 1188. https://doi.org/10.3390/jmse9111188
>Benoiston, A., Ibarbalz, F. M., Bittner, L., Guidi, L., Jahn, O., Dutkiewicz, S., & Bowler, C. (2017). The evolution of diatoms and their biogeochemical functions. Philosophical Transactions of the Royal Society B Biological Sciences, 372(1728), 20160397. https://doi.org/10.1098/rstb.2016.0397
>Chan, C. X., Yang, E. C., Banerjee, T., Yoon, H. S., Martone, P. T., Estevez, J. M., & Bhattacharya, D. (2011). Red and Green Algal Monophyly and Extensive Gene Sharing Found in a Rich Repertoire of Red Algal Genes. Current Biology, 21(4), 328–333. https://doi.org/10.1016/j.cub.2011.01.037
>Yoon, H., Andersen, R., Boo, S., & Bhattacharya, D. (2009). Stramenopiles. In Elsevier eBooks (pp. 721–731). https://doi.org/10.1016/b978-012373944-5.00253-4
>Gross, M. (2012). The mysteries of the diatoms. Current Biology, 22(15), R581–R585. https://doi.org/10.1016/j.cub.2012.07.041
>Thalassionema nitzschioides. (n.d.). EOS - Phytoplankton Encyclopedia Project. https://phytoplankton.eoas.ubc.ca/research/phytoplankton/diatoms/pennate/thalassionema/t_nitzschioides.html
>De Vargas, C., Aubry, M., Probert, I., & Young, J. (2007). Origin and evolution of coccolithophores: From coastal hunters to oceanic farmers. In Elsevier eBooks (pp. 251–285). https://doi.org/10.1016/b978-012370518-1/50013-8
>Biard, T. (2022). Diversity and ecology of Radiolaria in modern oceans. Environmental Microbiology, 24(5), 2179–2200. https://doi.org/10.1111/1462-2920.16004
>Anderson, O. (2001). Protozoa, radiolarians. In Elsevier eBooks (pp. 613–617). https://doi.org/10.1016/b978-012374473-9.00193-4
>Hohenegger, J. (2011). Large foraminifera : greenhouse constructions and gardeners in the oceanic microcosm. http://ci.nii.ac.jp/ncid/BB06097334
>Papenbrock, J. (2012). Highlights in seagrasses’ phylogeny, physiology, and metabolism: What makes them special? ISRN Botany, 2012, 1–15. https://doi.org/10.5402/2012/103892
>Taylor, J. D., & Glover, E. A. (2000). Functional anatomy, chemosymbiosis and evolution of the Lucinidae. Geological Society London Special Publications, 177(1), 207–225. https://doi.org/10.1144/gsl.sp.2000.177.01.12
>Van Tussenbroek, B. I., Villamil, N., Wong, R., & Verónica, L. (2016). Experimental evidence of pollination in marine flowers by invertebrate fauna. Nature Communications, 7(1), 1-6. https://doi.org/10.1038/ncomms12980
>Guerra-García, J. (2004). The Caprellidea (Crustacea, Amphipoda) from Western Australia and Northern Territory, Australia. Hydrobiologia, 522(1–3), 1–74. https://doi.org/10.1023/b:hydr.0000029929.07691.a7
>Bonada, N., & Bogan, M. T. (2023). Benthic animals. In Elsevier eBooks (pp. 621–655). https://doi.org/10.1016/b978-0-12-822701-5.00021-5
>Guerra-García, J. M., & De Figueroa, J. M. T. (2009). What do caprellids (Crustacea: Amphipoda) feed on? Marine Biology, 156(9), 1881–1890. https://doi.org/10.1007/s00227-009-1220-3
>Canto, J., Salas-Gismondi, R., Cozzuol, M., & Yáñez, J. (2008). The aquatic sloth Thalassocnus (Mammalia, Xenarthra) from the late Miocene of North-Central Chile: biogeographic and ecological implications. Journal of Vertebrate Paleontology, 28(3), 918–922. https://doi.org/10.1671/0272-4634(2008)28
>Amson, E., Argot, C., McDonald, H. G., & De Muizon, C. (2015). Osteology and Functional Morphology of the Axial Postcranium of the Marine Sloth Thalassocnus (Mammalia, Tardigrada) with Paleobiological Implications. Journal of Mammalian Evolution, 22(4), 473–518. https://doi.org/10.1007/s10914-014-9280-7
>Würsig, B., Thewissen, J., & Kovacs, K. M. (2017). Encyclopedia of Marine Mammals. Academic Press.
>De Muizon, C., & Fls, D. P. D. (2002). The anatomy of Odobenocetops (Delphinoidea, Mammalia), the walrus-like dolphin from the Pliocene of Peru and its palaeobiological implications. Zoological Journal of the Linnean Society, 134(4), 423–452. https://doi.org/10.1046/j.1096-3642.2002.00015.x
>Molina, J. M., & Cazorla, A. L. (2014). Biology of Myliobatis goodei (Springer, 1939), a widely distributed eagle ray, caught in northern Patagonia. Journal of Sea Research, 95, 106–114. https://doi.org/10.1016/j.seares.2014.09.006
>Myliobatis peruvianus: Dulvy, N.K., Acuña, E., Bustamante, C., Herman, K. & Velez-Zuazo, X. (2019). [Dataset]. In IUCN Red List of Threatened Species. https://doi.org/10.2305/iucn.uk.2020-3.rlts.t60126a124441708.en
>Ajemian, M. J., Lamboy, C., Ibrahim, A., DeGroot, B. C., Bassos-Hull, K., Mann, D. A., & Chérubin, L. (2020). Capturing shell-crushing by large mobile predators using passive acoustics technology. Journal of Experimental Marine Biology and Ecology, 535, 151497. https://doi.org/10.1016/j.jembe.2020.151497
>Colonello, J. H., Christiansen, H. E., Cousseau, M. B., & Macchi, G. J. (2013). Uterine dynamics of the southern eagle ray Myliobatis goodei (Chondrichthyes: Myliobatidae) from the southwest Atlantic Ocean. Italian Journal of Zoology, 80(2), 187–194. https://doi.org/10.1080/11250003.2012.742146
>Santillán, L. A., Cruces, C. L., Sáez, G. M., Murrieta Morey, G. A., Quiñones, M., Luque, J. L., & Chero, J. D. (2024). An Annotated Checklist of Monogeneans (Platyhelminthes, Monogenea) from Aquatic Vertebrates in Peru: A Review of Diversity, Hosts and Geographical Distribution. Animals, 14(11), 1542. https://doi.org/10.3390/ani14111542
>Ilgová, J., Salát, J., & Kašný, M. (2020). Molecular communication between the monogenea and fish immune system. Fish & Shellfish Immunology, 112, 179–190. https://doi.org/10.1016/j.fsi.2020.08.023
>Frasca, S., Wolf, J. C., Kinsel, M. J., Camus, A. C., & Lombardini, E. D. (2018). Osteichthyes. In Elsevier eBooks (pp. 953–1001). https://doi.org/10.1016/b978-0-12-805306-5.00039-0
>Ark clams (Anadara sp.). (n.d.). In Information Sheets for Fishing Communities. South Pacific Comission and Locally-Managed Marine Area Network. https://lmmanetwork.org/wp-content/uploads/2021/08/Anon_12_ISFC_22_Anadara.pdf
>Nicol, P. I., & O’gower, A. K. (1967). Haemoglobin Variation in Anadara trapezia. Nature, 216(5116), 684. https://doi.org/10.1038/216684a0
>Shumway, S. E., & Parsons, G. J. (2016). Scallops: Biology, Ecology, Aquaculture, and Fisheries. Elsevier.
>What causes tides? (n.d.). NOAA SciJinks – All About Weather. https://scijinks.gov/tides/
>Morga, B., Jacquot, M., Pelletier, C., Chevignon, G., Dégremont, L., Biétry, A., Pepin, J., Heurtebise, S., Escoubas, J., Bean, T. P., Rosani, U., Bai, C., Renault, T., & Lamy, J. (2021). Genomic diversity of the ostreid herpesvirus type 1 across time and location and among host species. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.711377
>Renault, T. (2008). Shellfish viruses. In Elsevier eBooks (pp. 560–567). https://doi.org/10.1016/b978-012374410-4.00781-0
>Döhner, K., Cornelius, A., Serrero, M. C., & Sodeik, B. (2021). The journey of herpesvirus capsids and genomes to the host cell nucleus. Current Opinion in Virology, 50, 147–158. https://doi.org/10.1016/j.coviro.2021.08.005
>King, W. L., Jenkins, C., Seymour, J. R., & Labbate, M. (2018). Oyster disease in a changing environment: Decrypting the link between pathogen, microbiome and environment. Marine Environmental Research, 143, 124–140. https://doi.org/10.1016/j.marenvres.2018.11.007
>Iglesias, J., Fuentes, L., & Villanueva, R. (2014). Cephalopod culture. In Springer eBooks. https://doi.org/10.1007/978-94-017-8648-5
>Gutnick, T., Rokhsar, D. S., & Kuba, M. J. (2023). Cephalopod behaviour. Current Biology, 33(20), R1083–R1086. https://doi.org/10.1016/j.cub.2023.08.094
>Monahan‐Earley, R., Dvorak, A., & Aird, W. (2013). Evolutionary origins of the blood vascular system and endothelium. Journal of Thrombosis and Haemostasis, 11, 46–66. https://doi.org/10.1111/jth.12253
>Finn, J. K., Tregenza, T., & Norman, M. D. (2009). Defensive tool use in a coconut-carrying octopus. Current Biology, 19(23), R1069–R1070. https://doi.org/10.1016/j.cub.2009.10.052
>Gilmore, R., & Krans, J. L. (2016). Cephalopod Camouflage: Cells and organs of the skin | Learn Science at Scitable. https://www.nature.com/scitable/topicpage/cephalopod-camouflage-cells-and-organs-of-the-144048968/
>Mäthger, L. M., Denton, E. J., Marshall, N. J., & Hanlon, R. T. (2008). Mechanisms and behavioural functions of structural coloration in cephalopods. Journal of the Royal Society Interface, 6(suppl_2). https://doi.org/10.1098/rsif.2008.0366.focus
>Fry, B. G., Roelants, K., & Norman, J. A. (2009). Tentacles of venom: toxic protein convergence in the kingdom animalia. Journal of Molecular Evolution, 68(4), 311–321. https://doi.org/10.1007/s00239-009-9223-8
>Jangoux, M., & Lawrence, J. M. (2020). Echinoderm Nutrition. In CRC Press eBooks. https://doi.org/10.1201/9781003078920
>(PDF) The Sea Stars (Echinodermata: Asteroidea): Their biology, Ecology, Evolution and Utilization OPEN ACCESS. (2018). ResearchGate. https://www.researchgate.net/publication/327890467_The_Sea_Stars_Echinodermata_Asteroidea_Their_Biology_Ecology_Evolution_and_Utilization_OPEN_ACCESS
>Matsubara, M., Komatsu, M., Araki, T., Asakawa, S., Yokobori, S., Watanabe, K., & Wada, H. (2005). The phylogenetic status of Paxillosida (Asteroidea) based on complete mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 36(3), 598–605. https://doi.org/10.1016/j.ympev.2005.03.018
>Vásquez, J. A., & Donoso, G. A. (2013). Loxechinus albus. In Developments in aquaculture and fisheries science (pp. 285–296). https://doi.org/10.1016/b978-0-12-396491-5.00020-4
>Smith, J., & Pier, J. Q. (n.d.). Echinoidea. Digital Atlas of Ancient Life. https://www.digitalatlasofancientlife.org/learn/echinodermata/echinoidea/
>Guisado, C., Carrasco, S. A., Díaz-Guisado, D., Maltrain, R., & Rojas, H. (2012). Embryonic development, larval morphology and juvenile growth of the sea cucumber Athyonidium chilensis (Holothuroidea: Dendrochirotida). Revista De Biología Marina Y Oceanografía, 47(1), 65–73. https://doi.org/10.4067/s0718-19572012000100006
>Sonnenholzner, J. I., Searcy-Bernal, R., & Panchana-Orrala, M. (2016). The potential for propagation of the commercial sea cucumber Isostichopus fuscus (Ludwig, 1875) by induced transverse fission. Regional Studies in Marine Science, 9, 35–42. https://doi.org/10.1016/j.rsma.2016.10.006
>Perillo, M., Sepe, R. M., Paganos, P., Toscano, A., & Annunziata, R. (2024). Sea cucumbers: an emerging system in evo-devo. EvoDevo, 15(1). https://doi.org/10.1186/s13227-023-00220-0
>Martins, L., Souto, C., & Tavares, M. (2020). Exploring the macrostructural anatomy of dendrochirotid sea cucumber’s (Echinodermata) calcareous rings under micro‐computed tomography and its bearing on phylogeny. Journal of Anatomy, 238(6), 1386–1403. https://doi.org/10.1111/joa.13385
>Baker, S. M., & Terwilliger, N. B. (1993). Hemoglobin Structure and Function in the Rat-Tailed Sea Cucumber, Paracaudina chilensis. Biological Bulletin, 185(1), 115–122. https://doi.org/10.2307/1542135
>Bertrand, M., Brosset, P., Soudant, P., & Lebigre, C. (2021). Spatial and ontogenetic variations in sardine feeding conditions in the Bay of Biscay through fatty acid composition. Marine Environmental Research, 173, 105514. https://doi.org/10.1016/j.marenvres.2021.105514
>Li, C., Zhang, Y., Li, J., Kong, L., Hu, H., Pan, H., Xu, L., Deng, Y., Li, Q., Jin, L., Yu, H., Chen, Y., Liu, B., Yang, L., Liu, S., Zhang, Y., Lang, Y., Xia, J., He, W., . . . Zhang, G. (2014). Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment. GigaScience, 3, 27. https://doi.org/10.1186/2047-217X-3-27
>Terrill, R. S., & Shultz, A. J. (2023). Feather function and the evolution of birds. Biological Reviews, 98(2), 540-566. https://doi.org/10.1111/brv.12918
>Report on the status and conservation of the Humboldt Penguin Spheniscus humboldti. (2003). UNEP World Conservation Monitoring Centre. https://www.cms.int/sites/default/files/document/Doc_05_Attach5_HumboldtPenguin_E_0.pdf
>Nissley, H. (n.d.). Spheniscus humboldti (Humboldt penguin). Animal Diversity Web. https://animaldiversity.org/accounts/Spheniscus_humboldti/
>Hoffmeister, M. F. C. (2012). A review of the Peruvian Neogene penguins. Sylvester-Bradley REPORTS. https://www.researchgate.net/publication/272479767_A_review_of_the_Peruvian_Neogene_penguin
>Stucchi, M., Urbina, M., & Giraldo, A. (2003). Una nueva especie de spheniscidae del Mioceno Tardío de la Formación Pisco, Perú. Bulletin De L’Institut Français D’études Andines, 32 (2), 361–375. https://doi.org/10.4000/bifea.6541
>Holmgren, S., & Olsson, C. (2010). Autonomic control of glands and secretion: A comparative view. Autonomic Neuroscience, 165(1), 102–112. https://doi.org/10.1016/j.autneu.2010.10.008
>Wahl, W. R. (2012). SALT GLAND STRUCTURES IDENTIFIED IN A LATE JURASSIC ICHTHYOSAUR, OPHTHALMOSAURUS NATANS. Paludicola, 8(4). https://rivp-paludicola.org/wp-content/uploads/2018/05/8-4-wahl-2012.pdf
>Cowgill, T., Young Fls, M. T., Schwab, J. A., Walsh, S., Witmer, L. M., Herrera, Y., Dollman, K. N., Turner, A. H., & Brusatte, S. L. (2023). Cephalic salt gland evolution in Mesozoic pelagic crocodylomorphs. Zoological Journal of the Linnean Society, 197(3), 812-835. https://doi.org/10.1093/zoolinnean/zlac027
>Dewaele, L., Peredo, C. M., Meyvisch, P., & Louwye, S. (2018). Diversity of late Neogene Monachinae (Carnivora, Phocidae) from the North Atlantic, with the description of two new species. Royal Society Open Science, 5(3), 172437. https://doi.org/10.1098/rsos.172437
>The Minke Whale Project. (n.d.). Vocalisations - Minke Whale Project. Minke Whale Project. http://minkewhaleproject.org/behaviour/vocalisations/
>Gatesy, J., Ekdale, E. G., Deméré, T. A., Lanzetti, A., Randall, J., Berta, A., Adli, J. J. E., Springer, M. S., & McGowen, M. R. (2022). Anatomical, ontogenetic, and genomic homologies guide reconstructions of the Teeth-to-Baleen transition in mysticete whales. Journal of Mammalian Evolution, 29(4), 891–930. https://doi.org/10.1007/s10914-022-09614-8
>Uchytel, R., & Uchytel, A. (n.d.). Piscobalaena. Uchytel.com. https://uchytel.com/Mesonyx
>Rule, J. P., Duncan, R. J., Marx, F. G., Pollock, T. I., Evans, A. R., & Fitzgerald, E. M. (2023). Giant baleen whales emerged from a cold southern cradle. Proceedings of the Royal Society B Biological Sciences, 290(2013). https://doi.org/10.1098/rspb.2023.2177
>Salas-Gismondi, R., Ochoa, D., Jouve, S., Romero, P. E., Cardich, J., Perez, A., DeVries, T., Baby, P., Urbina, M., & Carré, M. (2022). Miocene fossils from the southeastern Pacific shed light on the last radiation of marine crocodylians. Proceedings of the Royal Society B Biological Sciences, 289(1974). https://doi.org/10.1098/rspb.2022.0380
>Lang, J. W., & Kumar, P. (2013). Behavioral Ecology of Gharial on the Chambal River, India. Proceedings of the 22nd Working Meeting of theIUCN-SSC Specialist Group. https://www.researchgate.net/publication/255965176_Behavioral_Ecology_of_Gharial_on_the_Chambal_River_India_2013
>Ksepka, D. T. (2014). Flight performance of the largest volant bird. Proceedings of the National Academy of Sciences of the United States of America, 111(29), 10624. https://doi.org/10.1073/pnas.1320297111
>Spencer, M. (n.d.). Sula (boobies). Animal Diversity Web. https://animaldiversity.org/accounts/Sula/
>Cormorant Biology | Internet Center for Wildlife Damage Management. (n.d.). https://icwdm.org/species/birds/cormorants/cormorant-biology/
>Nasby-Lucas, N., Dewar, H., Sosa-Nishizaki, O., Wilson, C., Hyde, J. R., Vetter, R. D., Wraith, J., Block, B. A., Kinney, M. J., Sippel, T., Holts, D. B., & Kohin, S. (2019). Movements of electronically tagged shortfin mako sharks (Isurus oxyrinchus) in the eastern North Pacific Ocean. Animal Biotelemetry, 7(1). https://doi.org/10.1186/s40317-019-0174-6
>Pacific Shortfin Mako Shark. (n.d.). NOAA Fisheries. https://www.fisheries.noaa.gov/species/pacific-shortfin-mako-shark
>Bernal, D., Sepulveda, C., & Graham, J. B. (2001). Water-tunnel studies of heat balance in swimming mako sharks. Journal of Experimental Biology, 204(23), 4043–4054. https://doi.org/10.1242/jeb.204.23.4043
>Syv, L., Wp, T., M, L., & Hw, C. (2020). Accessing Multiple Paternity in the Shortfin Mako Shark (Isurus oxyrinchus). Zoological Studies, 59. https://doi.org/10.6620/zs.2020.59-49
>Lambert, O., Bianucci, G., & De Muizon, C. (2008). A new stem-sperm whale (Cetacea, Odontoceti, Physeteroidea) from the Latest Miocene of Peru. Comptes Rendus Palevol, 7(6), 361–369. https://doi.org/10.1016/j.crpv.2008.06.002
>Lambert, O., Bianucci, G., & De Muizon, C. (2016). Macroraptorial sperm whales (Cetacea, Odontoceti, Physeteroidea) from the Miocene of Peru. Zoological Journal of the Linnean Society. https://doi.org/10.1111/zoj.12456
>Whitehead, H. (2004). Sperm whales: social evolution in the ocean. Choice Reviews Online, 41(06), 41–3452. https://doi.org/10.5860/choice.41-3452
>McKenna, M. F., Cranford, T. W., Berta, A., & Pyenson, N. D. (2011). Morphology of the odontocete melon and its implications for acoustic function. Marine Mammal Science, 28(4), 690–713. https://doi.org/10.1111/j.1748-7692.2011.00526.x
>Carrier, D. R., Deban, S. M., & Otterstrom, J. (2002). The face that sank the Essex: potential function of the spermaceti organ in aggression. Journal of Experimental Biology, 205(12), 1755–1763. https://doi.org/10.1242/jeb.205.12.1755
>McDonald, H. G. (2007). Biomechanical inferences of locomotion in ground sloths: integrating morphological and track data. New Mexico Museum of Natural History and Science Bulletin, 42. https://books.google.com/books?id=bGbmCQAAQBAJ&dq=ground+sloth+walking&pg=PA201
>Nagy, N., Abari, E., D’Haese, J., Calheiros, C., Heukelbach, J., Mencke, N., Feldmeier, H., & Mehlhorn, H. (2007). Investigations on the life cycle and morphology of Tunga penetrans in Brazil. Parasitology Research, 101(S2), 233–242. https://doi.org/10.1007/s00436-007-0683-8
>Maco, V., Tantaleán, M., & Gotuzzo, E. (2011). Evidence of tungiasis in Pre-Hispanic America. Emerging Infectious Diseases, 17(5), 855–862. https://doi.org/10.3201/eid1705.100542
>Wille, M., & Holmes, E. C. (2019). The ecology and evolution of influenza viruses. Cold Spring Harbor Perspectives in Medicine, 10(7), a038489. https://doi.org/10.1101/cshperspect.a038489
>Influenza virus. (2009). Transfusion Medicine and Hemotherapy, 36(1), 32–39. https://doi.org/10.1159/000197314
>Bouvier, N. M., & Palese, P. (2008). The biology of influenza viruses. Vaccine, 26, D49–D53. https://doi.org/10.1016/j.vaccine.2008.07.039
>Clarke, M. R., & Fitch, J. E. (1979). Statoliths of Cenozoic teuthoid cephalopods from North America. Palaeontology, 22, 479–511. https://www.biodiversitylibrary.org/part/173494
>McClain, C. R., Balk, M. A., Benfield, M. C., Branch, T. A., Chen, C., Cosgrove, J., Dove, A. D., Gaskins, L., Helm, R. R., Hochberg, F. G., Lee, F. B., Marshall, A., McMurray, S. E., Schanche, C., Stone, S. N., & Thaler, A. D. (2015). Sizing ocean giants: patterns of intraspecific size variation in marine megafauna. PeerJ, 3, e715. https://doi.org/10.7717/peerj.715
>Kubodera, T., & Mori, K. (2005). First-ever observations of a live giant squid in the wild. Proceedings of the Royal Society B Biological Sciences, 272(1581), 2583–2586. https://doi.org/10.1098/rspb.2005.3158
>Roeleveld, M. A. C. (2002). Tentacle morphology of the giant squid Architeuthis from the North Atlantic and Pacific Oceans. Bulletin of Marine Science, 71(2). https://www.researchgate.net/publication/233566900_Tentacle_morphology_of_the_giant_squid_Architeuthis_from_the_North_Atlantic_and_Pacific_Oceans
>Graf, W. (2007). Vestibular system. In Elsevier eBooks (pp. 341–359). https://doi.org/10.1016/b0-12-370878-8/00095-1
>Gillanders, B. M., Wilkinson, L. M., Munro, A. R., & De Vries, M. C. (2012). Statolith chemistry of two life history stages of cuttlefish: Effects of temperature and seawater trace element concentration. Geochimica Et Cosmochimica Acta, 101, 12–23. https://doi.org/10.1016/j.gca.2012.10.005
>Kiel, S., Goedert, J. L., Huynh, T. L., Krings, M., Parkinson, D., Romero, R., & Looy, C. V. (2024). Early Oligocene kelp holdfasts and stepwise evolution of the kelp ecosystem in the North Pacific. Proceedings of the National Academy of Sciences, 121(4), e2317054121. https://doi.org/10.1073/pnas.2317054121
>Cuba, D., Cevallos, B., Neira, E., & Pons, A. (2022). Ecosystem Services Provided by Kelp Forests of the Humboldt Current System: A Comprehensive Review. Coasts, 2(4), 259-277. https://doi.org/10.3390/coasts2040013
>Kelp Forests. (2002). In Project Oceanography - University of South Florida. https://www.marine.usf.edu/pjocean/packets/sp02/sp02u1p4.pdf
>Goecke, F., Klemetsdal, G., & Ergon, Å. (2020). Cultivar Development of Kelps for Commercial Cultivation—Past Lessons and Future Prospects. Frontiers in Marine Science, 7, 516967. https://doi.org/10.3389/fmars.2020.00110
>Shimada, K., Chandler, R. E., Lam, O. L. T., Tanaka, T., & Ward, D. J. (2016). A new elusive otodontid shark (Lamniformes: Otodontidae) from the lower Miocene, and comments on the taxonomy of otodontid genera, including the ‘megatoothed’ clade. Historical Biology, 29(5), 704–714. https://doi.org/10.1080/08912963.2016.1236795
>Griffiths, M. L., Eagle, R. A., Kim, S. L., Flores, R. J., Becker, M. A., Maisch, H. M., Trayler, R. B., Chan, R. L., McCormack, J., Akhtar, A. A., Tripati, A. K., & Shimada, K. (2023). Endothermic physiology of extinct megatooth sharks. Proceedings of the National Academy of Sciences, 120(27), e2218153120. https://doi.org/10.1073/pnas.2218153120
>Aguilera. (2004). Giant-toothed white sharks and wide-toothed mako (Lamnidae) from the Venezuela neogene: Their role in the Caribbean, shallow-water fish assemblage. Caribbean Journal of Science, 40(3), 368–382. https://www.researchgate.net/publication/228741311_Giant-toothed_white_sharks_and_wide-toothed_mako_Lamnidae_from_the_Venezuela_Neogene_Their_role_in_the_Caribbean_shallow-water_fish_assemblage
>Creature Feature: Giant Ostracod. (n.d.). Ocean Twilight Zone - Woods Hole Oceanographic Institution. https://twilightzone.whoi.edu/explore-the-otz/creature-features/giant-ostracod/
>Gigantocypris muelleri. (n.d.). Natural History Museum. http://www.nhm.ac.uk/resources/research-curation/projects/atlantic-ostracods/pdfs/gigantocypris-muelleri.pdf
>Telford, M. J. (2019). Evolution: Arrow worms find their place on the tree of life. Current Biology, 29(5), R152–R154. https://doi.org/10.1016/j.cub.2018.12.029
>Wright, J. (n.d.). Chaetognatha (arrow worms). Animal Diversity Web. https://animaldiversity.org/accounts/Chaetognatha/
>Thuesen, E. V., Kogure, K., Hashimoto, K., & Nemoto, T. (1988). Poison arrowworms: a tetrodotoxin venom in the marine phylum Chaetognatha. Journal of Experimental Marine Biology and Ecology, 116(3), 249–256. https://doi.org/10.1016/0022-0981(88)90030-5
>Bleich, S., Müller, C. H., Graf, G., & Hanke, W. (2017). Flow generation by the corona ciliata in Chaetognatha − quantification and implications for current functional hypotheses. Zoology, 125, 79–86. https://doi.org/10.1016/j.zool.2017.09.001
>Fernholm, B. (1998). Hagfish Systematics. In Springer eBooks (pp. 33–44). https://doi.org/10.1007/978-94-011-5834-3_3
>Yutsyschyna, M., & Gillis, T. (2023). Case study: Anoxia tolerance in the Pacific hagfish (Eptatretus stoutii). In Elsevier eBooks (pp. 136–147). https://doi.org/10.1016/b978-0-323-90801-6.00154-3
>Hilário, A., Capa, M., Dahlgren, T. G., Halanych, K. M., S. Little, C. T., Thornhill, D. J., Verna, C., & Glover, A. G. New Perspectives on the Ecology and Evolution of Siboglinid Tubeworms. PLOS ONE, 6(2), e16309. https://doi.org/10.1371/journal.pone.0016309
>Waits, D. S., Santos, S. R., Thornhill, D. J., Li, Y., & Halanych, K. M. (2016). Evolution of Sulfur Binding by Hemoglobin in Siboglinidae (Annelida) with Special Reference to Bone-Eating Worms, Osedax. Journal of Molecular Evolution, 82(4–5), 219–229. https://doi.org/10.1007/s00239-016-9739-7
>Katz, S., & Rouse, G. W. (2013). The reproductive system of Osedax (Annelida, Siboglinidae): ovary structure, sperm ultrastructure, and fertilization mode. Invertebrate Biology, 132(4), 368–385. https://doi.org/10.1111/ivb.12037
>Orrego, F. S., Benítez, H. A., Castillo, M. I., Cumplido, N., Fabres, A., Figueroa-González, Y., Morales, C., Zavala-Muñoz, F., & Landaeta, M. F. (2024). Morphospace of lanternfish larvae and their interplay with oceanographic conditions from the southeastern Pacific Ocean. Deep Sea Research Part I Oceanographic Research Papers, 104413. https://doi.org/10.1016/j.dsr.2024.104413
>Belcher, A., Freer, J. J., Dornan, T., & Saunders, R. A. (2023). Illuminating the living lanterns of Antarctica. Frontiers for Young Minds, 11. https://doi.org/10.3389/frym.2023.926063
>Jumbo/Humboldt Squid ~ MarineBio Conservation Society. (n.d.). MarineBio Conservation Society. https://www.marinebio.org/species/jumbo-squid/dosidicus-gigas/
>Kurth, J., & Garzio, M. (n.d.). Dosidicus gigas. Animal Diversity Web. https://animaldiversity.org/accounts/Dosidicus_gigas/
>Vetter, R., Kohin, S., Preti, A., Mcclatchie, S., & Dewar, H. (2008). Predatory interactions and niche overlap between Mako Shark, Isurus oxyrinchus, and jumbo squid, Dosidicus gigas, in the California current. CalCOFI Reports, 49. https://www.researchgate.net/publication/236117652_Predatory_interactions_and_niche_overlap_between_Mako_Shark_isurus_oxyrinchus_and_jumbo_squid_Dosidicus_gigas_in_the_California_current
>Carcharias taurus. (n.d.). Discover Fishes - Florida Museum. https://www.floridamuseum.ufl.edu/discover-fish/species-profiles/carcharias-taurus/
>Smale, M. (2005). The diet of the ragged-tooth shark Carcharias taurus Rafinesque 1810 in the Eastern Cape, South Africa. African Journal of Marine Science, 27(1), 331–335. https://doi.org/10.2989/18142320509504091
>O’Dea, A., Lessios, H. A., Coates, A. G., Eytan, R. I., Restrepo-Moreno, S. A., Cione, A. L., Collins, L. S., De Queiroz, A., Farris, D. W., Norris, R. D., Stallard, R. F., Woodburne, M. O., Aguilera, O., Aubry, M., Berggren, W. A., Budd, A. F., Cozzuol, M. A., Coppard, S. E., Duque-Caro, H., . . . Jackson, J. B. C. (2016). Formation of the Isthmus of Panama. Science Advances, 2(8). https://doi.org/10.1126/sciadv.1600883
>Pino, K., Vallejos-Garrido, P., Espinoza-Aravena, N., Cooper, R. B., Silvestro, D., Hernández, C. E., & Rodríguez-Serrano, E. (2022). Regional landscape change triggered by Andean uplift: The extinction of Sparassodonta (Mammalia, Metatheria) in South America. Global and Planetary Change, 210, 103758. https://doi.org/10.1016/j.gloplacha.2022.103758